Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz...Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.展开更多
The photonic spin Hall effect(SHE)refers to the transverse spin separation of photons with opposite spin angular momentum,after the beam passes through an optical interface or inhomogeneous medium,manifested as the sp...The photonic spin Hall effect(SHE)refers to the transverse spin separation of photons with opposite spin angular momentum,after the beam passes through an optical interface or inhomogeneous medium,manifested as the spin-dependent splitting.It can be considered as an analogue of the SHE in electronic systems:the light’s right-circularly polarized and left-circularly polarized components play the role of the spin-up and spin-down electrons,and the refractive index gradient replaces the electronic potential gradient.Remarkably,the photonic SHE originates from the spin-orbit interaction of the photons and is mainly attributed to two different geometric phases,i.e.,the spin-redirection Rytov-Vlasimirskii-Berry in momentum space and the Pancharatnam-Berry phase in Stokes parameter space.The unique properties of the photonic SHE and its powerful ability to manipulate the photon spin,gradually,make it a useful tool in precision metrology,analog optical computing and quantum imaging,etc.In this review,we provide a brief framework to describe the fundamentals and advances of photonic SHE,and give an overview on the emergent applications of this phenomenon in different scenes.展开更多
基金Peng Xie acknowledges the support from the China Scholarship Council(Grant no.201804910829).
文摘Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.
基金supports from the National Natural Science Foundation of China(Grant No.12174097)the Natural Science Foundation of Hunan Province(Grant No.2021JJ10008).
文摘The photonic spin Hall effect(SHE)refers to the transverse spin separation of photons with opposite spin angular momentum,after the beam passes through an optical interface or inhomogeneous medium,manifested as the spin-dependent splitting.It can be considered as an analogue of the SHE in electronic systems:the light’s right-circularly polarized and left-circularly polarized components play the role of the spin-up and spin-down electrons,and the refractive index gradient replaces the electronic potential gradient.Remarkably,the photonic SHE originates from the spin-orbit interaction of the photons and is mainly attributed to two different geometric phases,i.e.,the spin-redirection Rytov-Vlasimirskii-Berry in momentum space and the Pancharatnam-Berry phase in Stokes parameter space.The unique properties of the photonic SHE and its powerful ability to manipulate the photon spin,gradually,make it a useful tool in precision metrology,analog optical computing and quantum imaging,etc.In this review,we provide a brief framework to describe the fundamentals and advances of photonic SHE,and give an overview on the emergent applications of this phenomenon in different scenes.