期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DOA estimation based on sparse Bayesian learning under amplitude-phase error and position error
1
作者 DONG Yijia XU Yuanyuan +1 位作者 LIU Shuai JIN Ming 《Journal of Systems Engineering and Electronics》 2025年第5期1122-1131,共10页
Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as... Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment. 展开更多
关键词 direction of arrival estimation(DOA) amplitude and phase error array element position error sparse Bayesian
在线阅读 下载PDF
Performance of M-QAM, M-DPSK and M-PSK with MRC diversity in a Nakagami-m fading channel
2
作者 Alam S.M.Shamsul Alam Choi GoangSeog 《Journal of Central South University》 SCIE EI CAS 2014年第4期1347-1352,共6页
The nature of a wireless communication channel is very unpredictable. To design a good communication link, it is required to know the statistical model of the channel accurately. The average symbol error probability(A... The nature of a wireless communication channel is very unpredictable. To design a good communication link, it is required to know the statistical model of the channel accurately. The average symbol error probability(ASER) was analyzed for different modulation schemes. A unified analytical framework was presented to obtain closed-form solutions for calculating the ASER of M-ary differential phase-shift keying(M-DPSK), coherent M-ary phase-shift keying(M-PSK), and quadrature amplitude modulation(QAM) over single or multiple Nakagami-m fading channels. Moreover, the ASER was estimated and evaluated by using the maximal ratio-combining(MRC) diversity technique. Simulation results show that an error rate of the fading channel typically depends on Nakagami parameters(m), space diversity(N), and symbol rate(M). A comparison between M-PSK, M-DPSK, and M-QAM modulation schemes was shown, and the results prove that M-ary QAM(M-QAM) demonstrates better performance compared to M-DPSK and M-PSK under all fading and non-fading conditions. 展开更多
关键词 M-ary differential phase-shift keying(M-DPSK) M-ary phase shift keying(M-PSK) Nakagami-m fading channel probability density function(PDF) symbol error rate(SER) M-ary quadrature amplitude modulation(M-QAM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部