Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
This review summarized the composition of volatile and nonvolatile compounds,the sensory mechanism and the application of Sichuan pepper(Zanthoxylum genus)as a spice and multifunctional food,such as antibacterial,inhi...This review summarized the composition of volatile and nonvolatile compounds,the sensory mechanism and the application of Sichuan pepper(Zanthoxylum genus)as a spice and multifunctional food,such as antibacterial,inhibition of inflammation,and antioxidant among others.The aim is to provide a better understanding and potential future in-depth research and application of Sichuan pepper.展开更多
The ternary amides LiK2(NH2)3, LiK(NH2)2, and Li3 K(NH2)4 are successfully synthesized by ball milling mixtures of LiNH2 and KNH2, and the hydrogen storage properties of Li3K(NH2)4–xMgH2(x = 1, 2, 3,4) are systematic...The ternary amides LiK2(NH2)3, LiK(NH2)2, and Li3 K(NH2)4 are successfully synthesized by ball milling mixtures of LiNH2 and KNH2, and the hydrogen storage properties of Li3K(NH2)4–xMgH2(x = 1, 2, 3,4) are systematically investigated. The Li3K(NH2)4–2 Mg H2 sample displays optimized hydrogen storage properties, releasing 6.37 wt% of hydrogen in a two-stage reaction with an onset temperature of 60 °C.The first dehydrogenation stage exhibits good reaction kinetics and thermodynamic properties because of a lower activation energy and appropriate enthalpy change. After full dehydrogenation at 130 °C, the Li3K(NH2)4–2 MgH2 sample absorbs 3.80 wt% of H2 below 160 °C in a variable temperature hydrogenation mode. Mechanistic investigations indicate that Li3 K(NH2)4 reacts with Mg H2 to produce Mg(NH2)2, LiH,and KH during ball milling. In the heating process, Mg(NH2)2 first reacts with Li H to form Li2 Mg2 N3 H3 and Li NH2, while KH works as a catalyst, and then, KH reacts with Li2Mg2N3H3 and Li NH2 to generate a new K-containing compound.展开更多
A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-pair donor chemicals can strongly coordinate to lead ions...A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-pair donor chemicals can strongly coordinate to lead ions and have been extensively employed to manipulate the growth of perovskite crystals.In this work,we demonstrate a series of Lewis-base amides,for morphological regulation of methylammonium lead triiodide(MAPbI3)thin films.The screened acetamide was demonstrated to decently improve the grain size,along with a spatial distribution at grain boundaries(GBs).The mesostructured solar cells of acetamide-modified absorbers yielded an optimized power conversion efficiency(PCE)of 20.04%with a mitigated open-circuit voltage(V_(OC))deficit of 0.39 V.This work provides a facile and cost-effective strategy toward controllable fabrication of high-performance MAPbI3 solar cells.展开更多
One of the major obstacles to the application of potassium-ion batteries in large-scale energy storage is the lack of safe and effective electrolytes.KNH_(2),a new potassium-ion solid electrolyte has been developed in...One of the major obstacles to the application of potassium-ion batteries in large-scale energy storage is the lack of safe and effective electrolytes.KNH_(2),a new potassium-ion solid electrolyte has been developed in this study.Its ionic conductivity reaches 4.84×10^(-5)S cm^(-1)at 150°C and can reach3.56×10^(-4)S cm^(-1)after mechanochemical treatment.The result from electron paramagnetic resonance(EPR) measurement shows that the increment of ionic conductivity is dependent on the concentration of nitrogen defects in the KNH_(2) electrolyte.To the best of our knowledge,this is the first report that adopts inorganic amide as an electrolyte for potassium-ion battery and initiates the search for a new amidebased solid electrolyte for an all-solid-state potassium-ion battery.展开更多
The influence of aryl amide compounds(TMB)as b-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite(WF/PP)prepared by compression molding was investigated by wide-angle ...The influence of aryl amide compounds(TMB)as b-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite(WF/PP)prepared by compression molding was investigated by wide-angle X-ray diffraction and differential scanning calorimetry. TMB was proved to be an effective b-crystalline nucleating agent for WF/PP. The DSC data showed that the crystallization peak temperature(Tp) increased and the half-time(t1/2) decreased with the addition of TMB.Three theoretical models were used to analyze the nonisothermal crystallization process. The modified Avrami method and Mo method successfully explained the nonisothermal crystallization behavior of PP and its composites. Their activation energies for non-isothermal crystallization were determined basing on the Kissinger method.展开更多
Multiple phase transitions are detected in sodium amide(NaNH2), an important hydrogen storage material, upon compression in diamond anvil cells(DAC) by using Raman spectroscopy and x-ray diffraction(XRD) measurements....Multiple phase transitions are detected in sodium amide(NaNH2), an important hydrogen storage material, upon compression in diamond anvil cells(DAC) by using Raman spectroscopy and x-ray diffraction(XRD) measurements.Additional Bragg reflections appear on lower and higher angle sides of the original ones at ~1.07 GPa and 1.84 GPa,accompanied by obvious changes in Raman spectroscopy, respectively.It reveals that NaNH2 undergoes the high-pressure phase sequence(α-β-γ) up to 20 GPa at room temperature.Spectral analysis indicates an orthorhombic structure with PBAN space group for the γ phase.We also experimentally observe high pressure induced recrystallization in alkaline amide compounds for the first time.展开更多
A novel atmospheric plasma device developed in this paper, which is more effective and convenient to study the plasma-initiated polymerization (PIP) than conventional setup. The structure and mechanism of the device i...A novel atmospheric plasma device developed in this paper, which is more effective and convenient to study the plasma-initiated polymerization (PIP) than conventional setup. The structure and mechanism of the device is introduced. Some plasma-initiated polymerization experiments are carried out on the device, and the conversion of AA (Acrylic acid) and AM (Acryl amide) atmospheric (N2) plasma polymerization are respectively 89% and 94% after 120 h post polymerization, whereby IR spectra of the product (AA, AM). Our PIP result are confirmed.展开更多
The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, ...The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, Mn2+, and Cr3+ ions were loaded onto the polyether block amide(PEBAX)/PAN composite membranes and were tested on the performance for separation of thiophene/n-heptane mixture. Pervaporation test results showed that the pervaporative separation index increased significantly to 73.1%, 75.5%, and 97.2% at 30 oC for the Ag+-, Mn2+-, Cr3+-loaded PEBAX membranes, respectively,as compared to the pristine PEBAX/PAN composite membrane.展开更多
A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar orga...A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure (called sulfur solution route), is reported in the present paper. The influences of polymerization time, molar ratio of precursors, catalyst and solvent upon the polymer were investigated. To seek the best parameters of polymerization, orthogonal design was employed in the experiments. The results indicate that the molar ratio of precursors is the most significant effect on both of viscosity and yield of the polymer. The suitable parameters for preparing the related polymer are presented. The polymer was characterized by IRspectrum, 1HNMRspectrum and Raman spectrum, etc.展开更多
We review the use of nuclear magnetic resonance(NMR)spectroscopy to assess the exchange of amide protons for deuterons(HDX)in efforts to understand how high concentration of cosolutes,especially macromolecules,affect ...We review the use of nuclear magnetic resonance(NMR)spectroscopy to assess the exchange of amide protons for deuterons(HDX)in efforts to understand how high concentration of cosolutes,especially macromolecules,affect the equilibrium thermodynamics of protein stability.HDX NMR is the only method that can routinely provide such data at the level of individual amino acids.We begin by discussing the properties of the protein systems required to yield equilibrium thermodynamic data and then review publications using osmolytes,sugars,denaturants,synthetic polymers,proteins,cytoplasm and in cells.展开更多
Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accu...Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.展开更多
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.
文摘This review summarized the composition of volatile and nonvolatile compounds,the sensory mechanism and the application of Sichuan pepper(Zanthoxylum genus)as a spice and multifunctional food,such as antibacterial,inhibition of inflammation,and antioxidant among others.The aim is to provide a better understanding and potential future in-depth research and application of Sichuan pepper.
基金supported by the National Natural Science Foundation(Grant number 51501175 and 51671172)the Zhejiang Provincial Natural Science Foundation of China(Grant number LQ16E010001 and LR16E010002)the Hubei Provincial Natural Science Foundation of China(Grant number 2015CFB498)
文摘The ternary amides LiK2(NH2)3, LiK(NH2)2, and Li3 K(NH2)4 are successfully synthesized by ball milling mixtures of LiNH2 and KNH2, and the hydrogen storage properties of Li3K(NH2)4–xMgH2(x = 1, 2, 3,4) are systematically investigated. The Li3K(NH2)4–2 Mg H2 sample displays optimized hydrogen storage properties, releasing 6.37 wt% of hydrogen in a two-stage reaction with an onset temperature of 60 °C.The first dehydrogenation stage exhibits good reaction kinetics and thermodynamic properties because of a lower activation energy and appropriate enthalpy change. After full dehydrogenation at 130 °C, the Li3K(NH2)4–2 MgH2 sample absorbs 3.80 wt% of H2 below 160 °C in a variable temperature hydrogenation mode. Mechanistic investigations indicate that Li3 K(NH2)4 reacts with Mg H2 to produce Mg(NH2)2, LiH,and KH during ball milling. In the heating process, Mg(NH2)2 first reacts with Li H to form Li2 Mg2 N3 H3 and Li NH2, while KH works as a catalyst, and then, KH reacts with Li2Mg2N3H3 and Li NH2 to generate a new K-containing compound.
基金financially supported by the National Natural Science Funds for Distinguished Young Scholar(51725201)the National Natural Science Foundation of China(51972111,51902185,51602103)+4 种基金Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)International(Regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(51920105003)Innovation Program of Shanghai Municipal Education Commission(E00014)the Fundamental Research Funds for the Central Universities(JKD012016025,JKD012016022)Shanghai Engineering Research Center of Hierarchical Nanomaterials(18DZ2252400)。
文摘A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-pair donor chemicals can strongly coordinate to lead ions and have been extensively employed to manipulate the growth of perovskite crystals.In this work,we demonstrate a series of Lewis-base amides,for morphological regulation of methylammonium lead triiodide(MAPbI3)thin films.The screened acetamide was demonstrated to decently improve the grain size,along with a spatial distribution at grain boundaries(GBs).The mesostructured solar cells of acetamide-modified absorbers yielded an optimized power conversion efficiency(PCE)of 20.04%with a mitigated open-circuit voltage(V_(OC))deficit of 0.39 V.This work provides a facile and cost-effective strategy toward controllable fabrication of high-performance MAPbI3 solar cells.
基金supported by the Key R&D Program of Shandong Province China (2020CXGC010402)the National Natural Science Foundation of China (51801197)+3 种基金the Youth Innovation Promotion Association CAS (2019189)the Liaoning Revitalization Talents Program (XLYC2002076)the Dalian High-level Talents Program (2019RD09)the K.C. Wong Education Foundation (GJTD2018-06)。
文摘One of the major obstacles to the application of potassium-ion batteries in large-scale energy storage is the lack of safe and effective electrolytes.KNH_(2),a new potassium-ion solid electrolyte has been developed in this study.Its ionic conductivity reaches 4.84×10^(-5)S cm^(-1)at 150°C and can reach3.56×10^(-4)S cm^(-1)after mechanochemical treatment.The result from electron paramagnetic resonance(EPR) measurement shows that the increment of ionic conductivity is dependent on the concentration of nitrogen defects in the KNH_(2) electrolyte.To the best of our knowledge,this is the first report that adopts inorganic amide as an electrolyte for potassium-ion battery and initiates the search for a new amidebased solid electrolyte for an all-solid-state potassium-ion battery.
基金financially supported by‘‘the Fundamental Research Funds for the Central Universities’’(2572015AB07)the Forestry Industry Research of China(No.201204802)the National Natural Science Foundation of China(No.31100425)
文摘The influence of aryl amide compounds(TMB)as b-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite(WF/PP)prepared by compression molding was investigated by wide-angle X-ray diffraction and differential scanning calorimetry. TMB was proved to be an effective b-crystalline nucleating agent for WF/PP. The DSC data showed that the crystallization peak temperature(Tp) increased and the half-time(t1/2) decreased with the addition of TMB.Three theoretical models were used to analyze the nonisothermal crystallization process. The modified Avrami method and Mo method successfully explained the nonisothermal crystallization behavior of PP and its composites. Their activation energies for non-isothermal crystallization were determined basing on the Kissinger method.
基金Project supported by the National Key R&D Program of China(Grant Nos.2018YFA0305900 and 2016YFB0201204)the National Natural Science Foundation of China(Grant Nos.51632002,51572108,11504127,91745203,and 11634004)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT 15R23)National Fund for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘Multiple phase transitions are detected in sodium amide(NaNH2), an important hydrogen storage material, upon compression in diamond anvil cells(DAC) by using Raman spectroscopy and x-ray diffraction(XRD) measurements.Additional Bragg reflections appear on lower and higher angle sides of the original ones at ~1.07 GPa and 1.84 GPa,accompanied by obvious changes in Raman spectroscopy, respectively.It reveals that NaNH2 undergoes the high-pressure phase sequence(α-β-γ) up to 20 GPa at room temperature.Spectral analysis indicates an orthorhombic structure with PBAN space group for the γ phase.We also experimentally observe high pressure induced recrystallization in alkaline amide compounds for the first time.
文摘A novel atmospheric plasma device developed in this paper, which is more effective and convenient to study the plasma-initiated polymerization (PIP) than conventional setup. The structure and mechanism of the device is introduced. Some plasma-initiated polymerization experiments are carried out on the device, and the conversion of AA (Acrylic acid) and AM (Acryl amide) atmospheric (N2) plasma polymerization are respectively 89% and 94% after 120 h post polymerization, whereby IR spectra of the product (AA, AM). Our PIP result are confirmed.
基金The financial support from the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2013Z009)the Guangxi Natural Science Fund (2014jjAA20079)the Guangdong Province of Quality and Technical Supervision Bureau (2018ZZ01) is greatly appreciated
文摘The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, Mn2+, and Cr3+ ions were loaded onto the polyether block amide(PEBAX)/PAN composite membranes and were tested on the performance for separation of thiophene/n-heptane mixture. Pervaporation test results showed that the pervaporative separation index increased significantly to 73.1%, 75.5%, and 97.2% at 30 oC for the Ag+-, Mn2+-, Cr3+-loaded PEBAX membranes, respectively,as compared to the pristine PEBAX/PAN composite membrane.
文摘A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure (called sulfur solution route), is reported in the present paper. The influences of polymerization time, molar ratio of precursors, catalyst and solvent upon the polymer were investigated. To seek the best parameters of polymerization, orthogonal design was employed in the experiments. The results indicate that the molar ratio of precursors is the most significant effect on both of viscosity and yield of the polymer. The suitable parameters for preparing the related polymer are presented. The polymer was characterized by IRspectrum, 1HNMRspectrum and Raman spectrum, etc.
文摘We review the use of nuclear magnetic resonance(NMR)spectroscopy to assess the exchange of amide protons for deuterons(HDX)in efforts to understand how high concentration of cosolutes,especially macromolecules,affect the equilibrium thermodynamics of protein stability.HDX NMR is the only method that can routinely provide such data at the level of individual amino acids.We begin by discussing the properties of the protein systems required to yield equilibrium thermodynamic data and then review publications using osmolytes,sugars,denaturants,synthetic polymers,proteins,cytoplasm and in cells.
文摘Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.