All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,...All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.展开更多
Lithium(Li)metal has the lowest standard electrochemical redox potential and very high theoretical specific capacity,making it the most potential anode material for rechargeable batteries[1].The use of Li metal in org...Lithium(Li)metal has the lowest standard electrochemical redox potential and very high theoretical specific capacity,making it the most potential anode material for rechargeable batteries[1].The use of Li metal in organic liquid electrolyte faces many issues in terms of battery performance and safety[2].Solid-electrolyte in-terphase(SEI)formation during the uneven Li deposition will continuously consume Li and dry up the electrolyte.Solid-state electrolytes are superior to liquid counterparts in terms of battery safety due to their nonflammable nature[3].展开更多
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge....Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.展开更多
The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous...The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance.展开更多
Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recyc...Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recycling.However,the current battery management technology faces significant challenges,and there is room for development.Digital twin(DT),as a technology that collectively senses,evaluates,predicts,and optimizes characteristics,is promising to contribute to redox flow batteries’operation,maintenance,and management.This paper begins with a brief description of redox flow batteries,followed by a short explanation of the concept and application of DTs.DTs have already made some progress in the field of batteries,and can be applied to solve the problems of redox flow batteries in terms of thermal management and system optimization.Finally,the paper analyzes the combination of redox flow battery and DT architecture,which is expected to contribute to developing DT technology for redox flow batteries.展开更多
As a potential alternative energy source in the quantum regime,a quantum battery inevitably experiences a process where the extracted work decreases due to the environmental decoherence.To inhibit the energy dissipati...As a potential alternative energy source in the quantum regime,a quantum battery inevitably experiences a process where the extracted work decreases due to the environmental decoherence.To inhibit the energy dissipation,we have put forward a scheme of a moving atom battery in a lossy cavity coupled to a structured environment.We investigate the dynamics of the maximally extracted work called the ergotropy by the open quantum system approach.It is found out that the decay of quantum work is significantly retarded in the non-Markovian environment.In contrast to the static case,the storage performance of the quantum battery is improved when the atom is in motion.The effect of energy preservation becomes more pronounced at higher velocities.Both the momery effect and motion control can play a positive role in extending the discharge lifetime.In addition,we have investigated the effects of environmental temperature,random noises,and quantum entanglement.These present results provides a feasible protocol for the open quantum battery.展开更多
Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging ...Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage.展开更多
The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performan...The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented.展开更多
Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))an...Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))and specific capacity(1675 mAh·g^(-1)).Currently,various strategies have been proposed to overcome the technical barriers,e.g.,“shuttle effect”,capacity decay and volumetric change,which impede the successful commercialization of lithium-sulfur batteries.This paper reviews the applications of metal nitrides as the cathode hosts for high-performance lithium-sulfur batteries,summa-rizes the design strategies of different host materials,and discusses the relationship between the properties of metal nitrides and their electrochemical performances.Finally,reasonable suggestions for the design and development of metal nitrides,along with ideas to promote future breakthroughs,are proposed.We hope that this review could attract more attention to metal nitrides and their derivatives,and further promote the electrochemical performance of lithium-sulfur batteries.展开更多
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e...Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.展开更多
This data set collects,compares and contrasts the capacities and structures of a series of hard carbon materials,and then searches for correlations between structure and electrochemical performance.The capacity data o...This data set collects,compares and contrasts the capacities and structures of a series of hard carbon materials,and then searches for correlations between structure and electrochemical performance.The capacity data of the hard carbons were obtained by charge/discharge tests and the materials were characterized by XRD,gas adsorption,true density tests and SAXS.In particular,the fitting of SAXS gave a series of structural parameters which showed good characterization.The related test details are given with the structural data of the hard carbons and the electrochemical performance of the sodium-ion batteries.展开更多
Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of...Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials.展开更多
This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooli...This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)...Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.展开更多
V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th...V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.展开更多
Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefitin...Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefiting from the inherent advantages of aqueous electrolytes and zinc metal anodes,including high ionic conductivity,low flammability,natural abundance,and high volumetric capacity,Zn-I_(2)batteries offer significant potential for grid-level deployment.This review provides a comprehensive overview of recent progress in three critical domains:positive-electrode engineering,zinc anode stabilization,and in situ characterization methods.On the cathode side,anchoring iodine to conductive matrices effectively mitigates polyiodide shuttling and enhances the kinetics of I−/I_(2)conversion.Advanced in situ characterization has enabled real-time monitoring of polyiodide intermediates(I_(3)−/I_(5)−),offering new insights into electrolyte-electrode interactions and guiding the development of functional additives to suppress shuttle effects.For the zinc anode,innovations such as pro-tective interfacial layers,three-dimensional host frameworks,and targeted electrolyte additives have shown efficacy in suppressing dendrite growth and side reactions,thus improving cycling stability and coulombic efficiency.Despite these advances,challenges remain in achieving long-term reversibility and structural integrity under practical conditions.Future directions include the design of synergistic electrolyte systems,and integrated electrode architectures that simultaneously optimize chemical stability,ion transport and mechanical durability for next-generation Zn-I_(2)battery technologies.展开更多
Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,t...Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.展开更多
As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a h...As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.展开更多
Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate per...Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate performance,arising from volume expansion and structural degradation,remain sig-nificant challenges.We report a novel FeS_(2)/CoS_(2) heterostruc-ture embedded in a 3D carbon aerogel matrix(FeS_(2)/CoS_(2)@C)synthesized by a cross-linking and vulcanization process.The resulting core-shell structure,with bimetallic FeS_(2)/CoS_(2) nano-particles encapsulated in a conductive carbon shell,effectively reduces the adverse effects of volume changes during sodiation/desodiation cycles.The 3D porous carbon network increases both ion and electron diffusion,while preventing agglomeration of the active material and maintaining interface integrity.The FeS_(2)/CoS_(2)@C composite has an outstanding electrochemical performance,including a high specific capacity of 725 mAh g^(-1)at 0.5 A g^(-1)and an exceptional rate capability of 572 mAh g^(-1)at 10 A g^(-1).It also has remarkable cycling stability with no signific-ant capacity decay over 1000 cycles at 5 A g^(-1).展开更多
基金the support of the Grant-in-Aid for JSPS Research Fellow.
文摘All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.
文摘Lithium(Li)metal has the lowest standard electrochemical redox potential and very high theoretical specific capacity,making it the most potential anode material for rechargeable batteries[1].The use of Li metal in organic liquid electrolyte faces many issues in terms of battery performance and safety[2].Solid-electrolyte in-terphase(SEI)formation during the uneven Li deposition will continuously consume Li and dry up the electrolyte.Solid-state electrolytes are superior to liquid counterparts in terms of battery safety due to their nonflammable nature[3].
基金supported by National Natural Science Foundation of China(52302034,52402060,52202201,52021006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD202001)+1 种基金Shenzhen Science and Technology Innovation Commission(KQTD20221101115627004)China Postdoctoral Science Foundation(2024T170972)。
文摘Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
基金supported by Basic and Applied Basic Research Fund Project of Guangdong(2022A1515011817,2023A1515030160)Research and Innovation Group of Guangdong University of Education(2024KYCXTD014)。
文摘The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance.
基金Supported by the Special Educating Project of the Talent for Carbon Peak and Carbon Neutrality of University of Chinese Academy of Sciences(E3E56501A2)。
文摘Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recycling.However,the current battery management technology faces significant challenges,and there is room for development.Digital twin(DT),as a technology that collectively senses,evaluates,predicts,and optimizes characteristics,is promising to contribute to redox flow batteries’operation,maintenance,and management.This paper begins with a brief description of redox flow batteries,followed by a short explanation of the concept and application of DTs.DTs have already made some progress in the field of batteries,and can be applied to solve the problems of redox flow batteries in terms of thermal management and system optimization.Finally,the paper analyzes the combination of redox flow battery and DT architecture,which is expected to contribute to developing DT technology for redox flow batteries.
文摘As a potential alternative energy source in the quantum regime,a quantum battery inevitably experiences a process where the extracted work decreases due to the environmental decoherence.To inhibit the energy dissipation,we have put forward a scheme of a moving atom battery in a lossy cavity coupled to a structured environment.We investigate the dynamics of the maximally extracted work called the ergotropy by the open quantum system approach.It is found out that the decay of quantum work is significantly retarded in the non-Markovian environment.In contrast to the static case,the storage performance of the quantum battery is improved when the atom is in motion.The effect of energy preservation becomes more pronounced at higher velocities.Both the momery effect and motion control can play a positive role in extending the discharge lifetime.In addition,we have investigated the effects of environmental temperature,random noises,and quantum entanglement.These present results provides a feasible protocol for the open quantum battery.
文摘Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage.
文摘The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented.
文摘Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))and specific capacity(1675 mAh·g^(-1)).Currently,various strategies have been proposed to overcome the technical barriers,e.g.,“shuttle effect”,capacity decay and volumetric change,which impede the successful commercialization of lithium-sulfur batteries.This paper reviews the applications of metal nitrides as the cathode hosts for high-performance lithium-sulfur batteries,summa-rizes the design strategies of different host materials,and discusses the relationship between the properties of metal nitrides and their electrochemical performances.Finally,reasonable suggestions for the design and development of metal nitrides,along with ideas to promote future breakthroughs,are proposed.We hope that this review could attract more attention to metal nitrides and their derivatives,and further promote the electrochemical performance of lithium-sulfur batteries.
文摘Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.
基金supported by the National Natural Science Foundation of China(22379157)CAS Project for Young Scientists in Basic Research(YSBR-102)+2 种基金Institute of Coal Chemistry,Chinese Academy of Sciences(SCJC-XCL-2023-13,SCJCXCL-2023-10)Talent Projects for Outstanding Doctoral Students to Work in Shanxi Province(E3SWR4791Z)Fundamental Research Program of Shanxi Province(202403021222485).
文摘This data set collects,compares and contrasts the capacities and structures of a series of hard carbon materials,and then searches for correlations between structure and electrochemical performance.The capacity data of the hard carbons were obtained by charge/discharge tests and the materials were characterized by XRD,gas adsorption,true density tests and SAXS.In particular,the fitting of SAXS gave a series of structural parameters which showed good characterization.The related test details are given with the structural data of the hard carbons and the electrochemical performance of the sodium-ion batteries.
文摘Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials.
文摘This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
文摘Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.
文摘V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.
基金supported by the National Natural Science Foundation of China(Nos.22175108&22379086)the Natural Scientific Foundation(ZR2022ZD27)Taishan Scholars Program of Shandong Province(NO.tstp20221105).
文摘Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefiting from the inherent advantages of aqueous electrolytes and zinc metal anodes,including high ionic conductivity,low flammability,natural abundance,and high volumetric capacity,Zn-I_(2)batteries offer significant potential for grid-level deployment.This review provides a comprehensive overview of recent progress in three critical domains:positive-electrode engineering,zinc anode stabilization,and in situ characterization methods.On the cathode side,anchoring iodine to conductive matrices effectively mitigates polyiodide shuttling and enhances the kinetics of I−/I_(2)conversion.Advanced in situ characterization has enabled real-time monitoring of polyiodide intermediates(I_(3)−/I_(5)−),offering new insights into electrolyte-electrode interactions and guiding the development of functional additives to suppress shuttle effects.For the zinc anode,innovations such as pro-tective interfacial layers,three-dimensional host frameworks,and targeted electrolyte additives have shown efficacy in suppressing dendrite growth and side reactions,thus improving cycling stability and coulombic efficiency.Despite these advances,challenges remain in achieving long-term reversibility and structural integrity under practical conditions.Future directions include the design of synergistic electrolyte systems,and integrated electrode architectures that simultaneously optimize chemical stability,ion transport and mechanical durability for next-generation Zn-I_(2)battery technologies.
文摘Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.
文摘As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.
文摘Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate performance,arising from volume expansion and structural degradation,remain sig-nificant challenges.We report a novel FeS_(2)/CoS_(2) heterostruc-ture embedded in a 3D carbon aerogel matrix(FeS_(2)/CoS_(2)@C)synthesized by a cross-linking and vulcanization process.The resulting core-shell structure,with bimetallic FeS_(2)/CoS_(2) nano-particles encapsulated in a conductive carbon shell,effectively reduces the adverse effects of volume changes during sodiation/desodiation cycles.The 3D porous carbon network increases both ion and electron diffusion,while preventing agglomeration of the active material and maintaining interface integrity.The FeS_(2)/CoS_(2)@C composite has an outstanding electrochemical performance,including a high specific capacity of 725 mAh g^(-1)at 0.5 A g^(-1)and an exceptional rate capability of 572 mAh g^(-1)at 10 A g^(-1).It also has remarkable cycling stability with no signific-ant capacity decay over 1000 cycles at 5 A g^(-1).