Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other...Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.展开更多
High-entropy alloys(HEAs)have become essential materials in the aerospace and defense industries due to their remarkable mechanical properties,which include wear resistance,fatigue endurance,and corrosion resistance.T...High-entropy alloys(HEAs)have become essential materials in the aerospace and defense industries due to their remarkable mechanical properties,which include wear resistance,fatigue endurance,and corrosion resistance.The welding of high-entropy alloys is a cutting-edge field of study that is attracting a lot of interest and investigation from research organizations and businesses.Welding defects including porosity and cracks are challenging problem and limit the development of welding HEAs.This paper provides a comprehensive review of research on weldability of HEAs and the application of diverse welding techniques on welding HEAs over recent years.The forming mechanism and control strategies of defects during welding HEAs were provided in this work.Various welding techniques,including arc welding,laser welding,electron beam welding,friction stir welding,diffusion bonding and explosive welding,have been extensively investigated and applied to improve the microstructure and mechanical properties of HEAs joints.Furthermore,an in-depth review of the microstructure and mechanical properties of HEAs joints obtained by various welding methods is presented.This paper concludes with a discussion of the potential challenges associated with high-entropy alloy welding,thus providing valuable insights for future research efforts in this area.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the...AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.展开更多
Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW result...Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ). Under water friction stir welding(UWFSW) is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.展开更多
Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an ...Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an optimum combination of welding parameters is critical in achieving high weld quality and productivity. In this work, initially, the SAW experiments were performed using fractional factorial design to analyze the effect of direct and indirect input parameters, namely, welding voltage, wire feed rate,welding speed, nozzle to plate distance, flux condition, and plate thickness on weld bead geometrical responses viz. bead width, reinforcement, and penetration. The bead on plate technique was used to deposit weld metal on AISI 1023 steel plates. The effect of SAW input parameters on response variables were analyzed using main and interaction effects. The linear regression was used to develop the mathematical models for the response variable. Then, the multi-objective optimization of input parameters was carried out using desirability approach, genetic algorithm and Jaya algorithm. The Jaya algorithm offered better optimization results as compared to desirability approach, genetic algorithm.展开更多
The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-d...The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.展开更多
Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experie...Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.展开更多
Creep strength enhanced ferritic(CSEF) steels are used in advanced power plant systems for high temperature applications. P92(Cr–W–Mo–V)steel, classified under CSEF steels, is a candidate material for piping, tubin...Creep strength enhanced ferritic(CSEF) steels are used in advanced power plant systems for high temperature applications. P92(Cr–W–Mo–V)steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis(GRA).Bead on plate(BOP) trials were carried out using a 3.5 k W diffusion cooled slab CO_2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone(HAZ) width. Analysis of variance(ANOVA) has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 k W, welding speed of 1 m/min and focal plane at-4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.展开更多
The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min.Corrosion behavior of the parent alloy(PA...The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min.Corrosion behavior of the parent alloy(PA),the heat affected zone(HAZ),and the weld nugget zone(WNZ)of the joints were studied in 3.5%(mass fraction)aerated aqueous Na Cl solution by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min.However,the value of corrosion rate in the weldments is lower than that in the PA.Additionally,the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ.On the contrary,the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed.The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases.The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy.With increasing the welding speed,the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region.In the HAZ region,in addition to the pits in the corroded area,some cracks can be seen around the corroded areas,which confirms that intergranular corrosion is formed in this area.The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions.Crystallographic pits are observed within the weld regions.展开更多
This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It ...This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod(CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel,Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile- shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.展开更多
This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s la...This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
Among many condition-monitoring systems in welding operation,Defect identification is an important method to ensure the precision in finishing operation.Friction stir welding is a solid state welding process used to j...Among many condition-monitoring systems in welding operation,Defect identification is an important method to ensure the precision in finishing operation.Friction stir welding is a solid state welding process used to join two metals without the use of electrode at lower temperatures.The aim of this present work is to identify and localize the tunnel defect in aluminum alloy and measure the distance of the defect zone in the time domain of the vibration signal during Friction stir welding.The vibration signals are captured from the experiments and the burst in the vibration signal is focused in the analysis.A signal-processing scheme is proposed to filter the noise and to measure the dimensional parameters of the defect area.The proposed technique consists of discrete wavelet transform(DWT),which is used to decompose the signal.The enveloping technique is applied on the decomposed zero padded signal.The continuous wavelet transform(CWT) has been implemented on detailed signal followed by a time marginal integration(TMI) of the CWT scalogram.Empirical mode decomposition(EMD) is used to replace the detailing coefficients from DWT with Intrinsic Mode Function(IMF).Statistical parameters such as mean,kurtosis,S.D and crest factor have been extracted from the final filtered signal for validating the defect welds from the control defect free welds.Results produced were found to be that kurtosis is 7.4402 for tunnel defect induced weld and 3.3862 for defect free welds.As the increase in kurtosis value predicts the defect zone impact in the signal.The measurement of the defect zone of the cut 1(voids) and cut 2(tunnel grooves) in correlation with the processed signal is found to produce a much redundant results with an error rate of 0.02.展开更多
Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature r...Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature range. A transient 3D model including heat transfer, fluid flow and tracking of free surface is built in this study. The transport phenomena are investigated by calculating the temperature and velocity fields. The 3D dynamic keyhole evolution process is revealed through tracking free surface using volume-of-fluid method. The results show that the keyhole deepening speed decreases with laser welding process before the quasi-steady state is reached. The plasma can greatly affect the keyhole depth through absorbing a great amount of laser energy and thus lowering the recoil pressure. Moreover, the relationship between keyhole depth and weld penetration is also discussed. This paper can help to better understand the dynamics in molten pool and then improve laser welding process.展开更多
A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input ...A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.展开更多
Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a th...Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a three-dimensional transient model using FLOW-3 D software. The mathematical model considered buoyancy and surface tension driving forces. Further, effects of droplet heat content and impact force on weld pool surface deformation were added to the model. The results of simulation showed that an increase in the welding current could increase peak temperature and the maximum velocity in the weld pool. The weld pool dimensions and width of the heat-affected zone(HAZ) were enlarged by increasing the welding current. In addition, dimensionless Peclet, Grashof and surface tension Reynolds numbers were calculated to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. In order to validate the model, welding experiments were conducted under several welding currents. The predicted weld pool dimensions were compared with the corresponding experimental results, and good agreement between simulation and preliminary test results was achieved.展开更多
基金financially supported by the Key Research and Development Program of Ningbo(Grant No.2023Z098)Natural Science Foundation of Inner Mongolia(Grant No.2023MS05040)+1 种基金Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials(Grant No.JG210027)Shenyang Key Technology Special Project of The Open Competition Mechanism to Select the Best Solution(Grant Nos.2022210101000827,2022-0-43-048).
文摘Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.
基金Project(52105351)supported by the National Natural Science Foundation of ChinaProject(24KJA460002)supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,ChinaProject(G2023014009L)supported by the High-end Foreign Experts Recruitment Plan of China。
文摘High-entropy alloys(HEAs)have become essential materials in the aerospace and defense industries due to their remarkable mechanical properties,which include wear resistance,fatigue endurance,and corrosion resistance.The welding of high-entropy alloys is a cutting-edge field of study that is attracting a lot of interest and investigation from research organizations and businesses.Welding defects including porosity and cracks are challenging problem and limit the development of welding HEAs.This paper provides a comprehensive review of research on weldability of HEAs and the application of diverse welding techniques on welding HEAs over recent years.The forming mechanism and control strategies of defects during welding HEAs were provided in this work.Various welding techniques,including arc welding,laser welding,electron beam welding,friction stir welding,diffusion bonding and explosive welding,have been extensively investigated and applied to improve the microstructure and mechanical properties of HEAs joints.Furthermore,an in-depth review of the microstructure and mechanical properties of HEAs joints obtained by various welding methods is presented.This paper concludes with a discussion of the potential challenges associated with high-entropy alloy welding,thus providing valuable insights for future research efforts in this area.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.
文摘AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.
基金the financial support of the Directorate of Extramural Research & Intellectual Property Rights (ER&IPR)Defense Research Development Organization (DRDO)New Delhi through a R&D project no. DRDO-ERIPER/ERIP/ER/0903821/M/01/1404 to carry out this investigation
文摘Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ). Under water friction stir welding(UWFSW) is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
文摘Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an optimum combination of welding parameters is critical in achieving high weld quality and productivity. In this work, initially, the SAW experiments were performed using fractional factorial design to analyze the effect of direct and indirect input parameters, namely, welding voltage, wire feed rate,welding speed, nozzle to plate distance, flux condition, and plate thickness on weld bead geometrical responses viz. bead width, reinforcement, and penetration. The bead on plate technique was used to deposit weld metal on AISI 1023 steel plates. The effect of SAW input parameters on response variables were analyzed using main and interaction effects. The linear regression was used to develop the mathematical models for the response variable. Then, the multi-objective optimization of input parameters was carried out using desirability approach, genetic algorithm and Jaya algorithm. The Jaya algorithm offered better optimization results as compared to desirability approach, genetic algorithm.
文摘The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.
文摘Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.
基金the management of Bharat Heavy Electricals Ltd., for funding this research programme
文摘Creep strength enhanced ferritic(CSEF) steels are used in advanced power plant systems for high temperature applications. P92(Cr–W–Mo–V)steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis(GRA).Bead on plate(BOP) trials were carried out using a 3.5 k W diffusion cooled slab CO_2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone(HAZ) width. Analysis of variance(ANOVA) has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 k W, welding speed of 1 m/min and focal plane at-4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
文摘The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min.Corrosion behavior of the parent alloy(PA),the heat affected zone(HAZ),and the weld nugget zone(WNZ)of the joints were studied in 3.5%(mass fraction)aerated aqueous Na Cl solution by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min.However,the value of corrosion rate in the weldments is lower than that in the PA.Additionally,the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ.On the contrary,the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed.The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases.The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy.With increasing the welding speed,the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region.In the HAZ region,in addition to the pits in the corroded area,some cracks can be seen around the corroded areas,which confirms that intergranular corrosion is formed in this area.The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions.Crystallographic pits are observed within the weld regions.
文摘This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod(CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel,Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile- shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.
基金Project(52004154) supported by the National Natural Science Foundation of ChinaProject(ZR2020QE002) supported by the Shandong Provincial Natural Science Foundation,ChinaProject(6142005190208) supported by the National Key Laboratory Foundation of China。
文摘This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
文摘Among many condition-monitoring systems in welding operation,Defect identification is an important method to ensure the precision in finishing operation.Friction stir welding is a solid state welding process used to join two metals without the use of electrode at lower temperatures.The aim of this present work is to identify and localize the tunnel defect in aluminum alloy and measure the distance of the defect zone in the time domain of the vibration signal during Friction stir welding.The vibration signals are captured from the experiments and the burst in the vibration signal is focused in the analysis.A signal-processing scheme is proposed to filter the noise and to measure the dimensional parameters of the defect area.The proposed technique consists of discrete wavelet transform(DWT),which is used to decompose the signal.The enveloping technique is applied on the decomposed zero padded signal.The continuous wavelet transform(CWT) has been implemented on detailed signal followed by a time marginal integration(TMI) of the CWT scalogram.Empirical mode decomposition(EMD) is used to replace the detailing coefficients from DWT with Intrinsic Mode Function(IMF).Statistical parameters such as mean,kurtosis,S.D and crest factor have been extracted from the final filtered signal for validating the defect welds from the control defect free welds.Results produced were found to be that kurtosis is 7.4402 for tunnel defect induced weld and 3.3862 for defect free welds.As the increase in kurtosis value predicts the defect zone impact in the signal.The measurement of the defect zone of the cut 1(voids) and cut 2(tunnel grooves) in correlation with the processed signal is found to produce a much redundant results with an error rate of 0.02.
基金Projects(51804348,51804196) supported by the National Natural Science Foundation of China
文摘Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature range. A transient 3D model including heat transfer, fluid flow and tracking of free surface is built in this study. The transport phenomena are investigated by calculating the temperature and velocity fields. The 3D dynamic keyhole evolution process is revealed through tracking free surface using volume-of-fluid method. The results show that the keyhole deepening speed decreases with laser welding process before the quasi-steady state is reached. The plasma can greatly affect the keyhole depth through absorbing a great amount of laser energy and thus lowering the recoil pressure. Moreover, the relationship between keyhole depth and weld penetration is also discussed. This paper can help to better understand the dynamics in molten pool and then improve laser welding process.
文摘A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.
文摘Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a three-dimensional transient model using FLOW-3 D software. The mathematical model considered buoyancy and surface tension driving forces. Further, effects of droplet heat content and impact force on weld pool surface deformation were added to the model. The results of simulation showed that an increase in the welding current could increase peak temperature and the maximum velocity in the weld pool. The weld pool dimensions and width of the heat-affected zone(HAZ) were enlarged by increasing the welding current. In addition, dimensionless Peclet, Grashof and surface tension Reynolds numbers were calculated to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. In order to validate the model, welding experiments were conducted under several welding currents. The predicted weld pool dimensions were compared with the corresponding experimental results, and good agreement between simulation and preliminary test results was achieved.