We design three kinds of photonic crystal fibres (PCF) with two zero-dispersion wavelengths (ZDWs) using the improved full vector index method (FVIM) and finite-difference frequency domain (FDFD} techniques. Ba...We design three kinds of photonic crystal fibres (PCF) with two zero-dispersion wavelengths (ZDWs) using the improved full vector index method (FVIM) and finite-difference frequency domain (FDFD} techniques. Based on these designed fibres, the effect of fibre structure, pump power and wavelength on the modulation instability (MI) gain in the anomalous dispersion region close to the second ZDW of the PCFs is comprehensively analysed in this paper. The analytical results show that an optimal MI gain can be obtained when the optimal pump wavelength (1530 nm) is slightly shorter than the second ZDW (1538 nm) and the optimal pump power is 250 W. Importantly, the total MI gain bandwidth has been increased to 260 nm for the first time, so far as we know, for an optimally-designed fibre with ∧ = 1.4 nm and d/∧ = 0.676, and the gain profile became much smoother. The optimal pump wavelength relies on the second ZDW of the PCF whereas the optimal pump power depends on the corporate operation of the optimal fibre structure and optimal pump wavelength, which is important in designing the most appropriate PCF to attain higher broadband and gain amplification.展开更多
High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness ...High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness of the target changes in a large scale,the fixed electron multiplying(EM) gain will not be suited to the sensing limitation.Therefore an auto-gain-control method based on the brightness of light-spots array in S–H WFS is proposed in this paper.The control value is the average of the maximum signals of every light spot in an array,which has been demonstrated to be kept stable even under the influence of some noise and turbulence,and sensitive enough to the change of target brightness.A goal value is needed in the control process and it is predetermined based on the characters of EMCCD.Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust,the sensing SNR reaches the maximum for the corresponding signal level,and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band.展开更多
In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating c...In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.展开更多
Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive an...Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.展开更多
This Paper has first studied the simplified model of tubular heat exchanger which is widely used in the industry and other field.On the basis of reference 2,a new pole assignment design method of pro-cess control syst...This Paper has first studied the simplified model of tubular heat exchanger which is widely used in the industry and other field.On the basis of reference 2,a new pole assignment design method of pro-cess control system with derivative control action is found.For the above system,the method and the for-mation which calculate the feedback matrix K and gain matrix L is given,and the simulation of the system is made.展开更多
基金Project supported by the National Key Basic Research Program of China (Grant No 2006CB806001)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KGCX-YW-417-2)Shanghai Commission of Science and Technology,China (Grant No 07JC14055)
文摘We design three kinds of photonic crystal fibres (PCF) with two zero-dispersion wavelengths (ZDWs) using the improved full vector index method (FVIM) and finite-difference frequency domain (FDFD} techniques. Based on these designed fibres, the effect of fibre structure, pump power and wavelength on the modulation instability (MI) gain in the anomalous dispersion region close to the second ZDW of the PCFs is comprehensively analysed in this paper. The analytical results show that an optimal MI gain can be obtained when the optimal pump wavelength (1530 nm) is slightly shorter than the second ZDW (1538 nm) and the optimal pump power is 250 W. Importantly, the total MI gain bandwidth has been increased to 260 nm for the first time, so far as we know, for an optimally-designed fibre with ∧ = 1.4 nm and d/∧ = 0.676, and the gain profile became much smoother. The optimal pump wavelength relies on the second ZDW of the PCF whereas the optimal pump power depends on the corporate operation of the optimal fibre structure and optimal pump wavelength, which is important in designing the most appropriate PCF to attain higher broadband and gain amplification.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,61205021,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness of the target changes in a large scale,the fixed electron multiplying(EM) gain will not be suited to the sensing limitation.Therefore an auto-gain-control method based on the brightness of light-spots array in S–H WFS is proposed in this paper.The control value is the average of the maximum signals of every light spot in an array,which has been demonstrated to be kept stable even under the influence of some noise and turbulence,and sensitive enough to the change of target brightness.A goal value is needed in the control process and it is predetermined based on the characters of EMCCD.Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust,the sensing SNR reaches the maximum for the corresponding signal level,and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band.
基金Supported by the Heilongjiang Postdoctoral Foundation under Grant No. LH-04010
文摘In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB215202)the National Natural Science Foundation of China(Grant Nos.61104080 and 61134001)the Fundamental Research Funds for the Central Universities(Grant No.CDJZR13 175501)
文摘Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.
文摘This Paper has first studied the simplified model of tubular heat exchanger which is widely used in the industry and other field.On the basis of reference 2,a new pole assignment design method of pro-cess control system with derivative control action is found.For the above system,the method and the for-mation which calculate the feedback matrix K and gain matrix L is given,and the simulation of the system is made.