Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the ...Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the low electrochemical performance of the available carbon-based electrodes.Defect engineering is a powerful strategy to enhance the redox catalytic activity of carbon-based electrodes for VRFBs.In this paper,uniform carbon defects are introduced on the surfaces of carbon felt(CF)electrode by Ar plasma etching.Together with a higher specific surface area,the Ar plasma treated CF offers additional catalytic sites,allowing faster and more reversible oxidation/reduction reactions of vanadium ions.As a result,the VRFB using plasma treated electrode shows a power density of 1018.3 mW/cm^(2),an energy efficiency(EE)of 84.5%,and the EE remains stable over 1000 cycles.展开更多
为改善1 MW光伏发电系统(PVG)柔性故障穿越(FFRT)能力,提出了基于全钒液流电池(VRB)储能的三相解耦型不间断动态电压恢复器(UDVR)拓扑结构。在对并网型PVG系统、VRB的等效电路模型和充放电特性、双向DC/DC变换器小信号数学模型和UDVR的...为改善1 MW光伏发电系统(PVG)柔性故障穿越(FFRT)能力,提出了基于全钒液流电池(VRB)储能的三相解耦型不间断动态电压恢复器(UDVR)拓扑结构。在对并网型PVG系统、VRB的等效电路模型和充放电特性、双向DC/DC变换器小信号数学模型和UDVR的工作原理进行理论分析的基础上,建立了VRB储能三相解耦UDVR与2路500 k W PVG并网系统仿真模型。PVG正常运行时UDVR处于旁路备用,检测到公共耦合点(PCC)电压故障时UDVR投入运行。依据国家最新光伏电站并网技术标准中规定的最严重电压故障边界条件,设计了6类代表性电网对称/不对称跌落/骤升故障工况,分别对投入UDVR时PVG系统的运行特性进行了深入分析。结果表明:针对各类PCC电压故障,三相解耦型UDVR均可灵活地向电网注入相应的补偿电压,维持了负荷端电压稳定,在宽电压故障范围实现了1 MW PVG系统FFRT运行。展开更多
PAN-based graphite felt (PGF) treated in 98% sulphuric acid for 5 h and then kept at 450 ℃ for 2 h was evaluated for their electrochemical performance as electrodes of vanadium redox battery (VRB). Structure and ...PAN-based graphite felt (PGF) treated in 98% sulphuric acid for 5 h and then kept at 450 ℃ for 2 h was evaluated for their electrochemical performance as electrodes of vanadium redox battery (VRB). Structure and characteristic of treated PAN-based graphite felt (TPGF) were determined by means of Fourier Transform Infi-ared Spectroscopy, Scanning Electron Microscopy, Brunauer-Emmett-Teller surface area analysis and VRB test system. The results show that the acid and heat synergistic effect increase the number of --COOH functional groups on the PGF surface, and the PGF is eroded by sulphuric acid oxidation, resulting in the surface area increases from 0.31 m^2/g to 0.45 m^2/g. The V( Ⅱ )/V(Ⅲ) redox reaction is electrochemically reversible on the TPGF electrode, while the V(Ⅳ)/V(Ⅴ) couple is a quasi reversible process. The diffusion coefficients of the oxidation for V(Ⅳ)/V(Ⅴ) obtained from the scope of peak current Ip vs scan rate v^1/2 is 4.4×10^-5 cm^2/s. The improvement of electrochemical activity for the electrode is mainly ascribed to the increase of the number of ---COOH groups on the TPGF, which behaves as active sites catalyzing the vanadium species reactions and accelerating electron transfer reaction and oxygen transfer.展开更多
基金Project(Xiang Zu [2016] 91) supported by the “100 Talented Teams” of Hunan Province,ChinaProject(2018RS3077) supported by the Huxiang High-level Talents Program,China+2 种基金Project(22002009) supported by the National Natural Science Foundation of ChinaProject(2021JJ40565) supported by the Natural Science Foundation of Hunan Province,ChinaProject(19C0054) supported by the Scientific Research Foundation of Hunan Provincial Education Department,China。
文摘Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the low electrochemical performance of the available carbon-based electrodes.Defect engineering is a powerful strategy to enhance the redox catalytic activity of carbon-based electrodes for VRFBs.In this paper,uniform carbon defects are introduced on the surfaces of carbon felt(CF)electrode by Ar plasma etching.Together with a higher specific surface area,the Ar plasma treated CF offers additional catalytic sites,allowing faster and more reversible oxidation/reduction reactions of vanadium ions.As a result,the VRFB using plasma treated electrode shows a power density of 1018.3 mW/cm^(2),an energy efficiency(EE)of 84.5%,and the EE remains stable over 1000 cycles.
文摘为改善1 MW光伏发电系统(PVG)柔性故障穿越(FFRT)能力,提出了基于全钒液流电池(VRB)储能的三相解耦型不间断动态电压恢复器(UDVR)拓扑结构。在对并网型PVG系统、VRB的等效电路模型和充放电特性、双向DC/DC变换器小信号数学模型和UDVR的工作原理进行理论分析的基础上,建立了VRB储能三相解耦UDVR与2路500 k W PVG并网系统仿真模型。PVG正常运行时UDVR处于旁路备用,检测到公共耦合点(PCC)电压故障时UDVR投入运行。依据国家最新光伏电站并网技术标准中规定的最严重电压故障边界条件,设计了6类代表性电网对称/不对称跌落/骤升故障工况,分别对投入UDVR时PVG系统的运行特性进行了深入分析。结果表明:针对各类PCC电压故障,三相解耦型UDVR均可灵活地向电网注入相应的补偿电压,维持了负荷端电压稳定,在宽电压故障范围实现了1 MW PVG系统FFRT运行。
基金Project (03GKY3015) supported by the Foundation of Hunan Provincial Department of Science and Technology
文摘PAN-based graphite felt (PGF) treated in 98% sulphuric acid for 5 h and then kept at 450 ℃ for 2 h was evaluated for their electrochemical performance as electrodes of vanadium redox battery (VRB). Structure and characteristic of treated PAN-based graphite felt (TPGF) were determined by means of Fourier Transform Infi-ared Spectroscopy, Scanning Electron Microscopy, Brunauer-Emmett-Teller surface area analysis and VRB test system. The results show that the acid and heat synergistic effect increase the number of --COOH functional groups on the PGF surface, and the PGF is eroded by sulphuric acid oxidation, resulting in the surface area increases from 0.31 m^2/g to 0.45 m^2/g. The V( Ⅱ )/V(Ⅲ) redox reaction is electrochemically reversible on the TPGF electrode, while the V(Ⅳ)/V(Ⅴ) couple is a quasi reversible process. The diffusion coefficients of the oxidation for V(Ⅳ)/V(Ⅴ) obtained from the scope of peak current Ip vs scan rate v^1/2 is 4.4×10^-5 cm^2/s. The improvement of electrochemical activity for the electrode is mainly ascribed to the increase of the number of ---COOH groups on the TPGF, which behaves as active sites catalyzing the vanadium species reactions and accelerating electron transfer reaction and oxygen transfer.