To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil...This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep effic...There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep efficiency,gas channeling and difficult whole-process control.Through laboratory experiments,technical research and field practice,the theory and technology of CO_(2)high pressure miscible flooding and storage are established.By increasing the formation pressure to 1.2 times the minimum miscible pressure,the miscibility of the medium-heavy components can be improved,the production percentage of oil in small pores can be increased,the displacing front developed evenly,and the swept volume expanded.Rapid high-pressure miscibility is realized through advanced pressure flooding and energy replenishment,and technologies of cascade water-alternating-gas(WAG),injection and production coupling and multistage chemical plugging are used for dynamic control of flow resistance,so as to obtain the optimum of oil recovery and CO_(2)storage factor.The research results have been applied to the Gao89-Fan142 in carbon capture,utilization and storage(CCUS)demonstration site,where the daily oil production of the block has increased from 254.6 t to 358.2 t,and the recovery degree is expected to increase by 11.6 percentage points in 15 years,providing theoretical and technical support for the large-scale development of CCUS.展开更多
To solve the problems of shear degradation and injection difficulties in conventional polymer flooding,the capsule polymer flooding for enhanced oil recovery(EOR)was proposed.The flow and oil displacement mechanisms o...To solve the problems of shear degradation and injection difficulties in conventional polymer flooding,the capsule polymer flooding for enhanced oil recovery(EOR)was proposed.The flow and oil displacement mechanisms of this technique were analyzed using multi-scale flow experiments and simulation technology.It is found that the capsule polymer flooding has the advantages of easy injection,shear resistance,controllable release in reservoir,and low adsorption retention,and it is highly capable of long-distance migration to enable viscosity increase in deep reservoirs.The higher degree of viscosity increase by capsule polymer,the stronger the ability to suppress viscous fingering,resulting in a more uniform polymer front and a larger swept range.The release performance of capsule polymer is mainly sensitive to temperature.Higher temperatures result in faster viscosity increase by capsule polymer solution.The salinity has little impact on the rate of viscosity increase.The capsule polymer flooding is suitable for high-water-cut reservoirs for which conventional polymer flooding techniques are less effective,offshore reservoirs by polymer flooding in largely spaced wells,and medium to low permeability reservoirs where conventional polymers cannot be injected efficiently.Capsule polymer flooding should be customized specifically,with the capsule particle size and release time to be determined depending on target reservoir conditions to achieve the best displacement effect.展开更多
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t...Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.展开更多
The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling softw...The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.展开更多
Streamline-adjustment-assisted heterogeneous combination flooding is a new technology for enhanced oil recovery for post-polymer-flooded reservoirs.In this work,we first carried out a series of 2D visualization experi...Streamline-adjustment-assisted heterogeneous combination flooding is a new technology for enhanced oil recovery for post-polymer-flooded reservoirs.In this work,we first carried out a series of 2D visualization experiments for different chemical flooding scenarios after polymer flooding.Then,we explored the synergistic mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery and the contribution of each component.Test results show that for single heterogeneous combination flooding,the residual oil in the main streamline area after polymer flooding is ready to be driven,but it is difficult to be recovered in the non-main streamline area.Due to the effect of drainage and synergism,the streamline-adjustment-assisted heterogeneous combination flooding diverts the injected chemical agent from the main streamline area to the non-main streamline area,which consequently expands the active area of chemical flooding.Based on the results from the single-factor contribution of the quantitative analysis,the contribution of temporary plugging and profile control of branched preformed particle gels ranks in the first place and followed by the polymer profile control and the effect of streamline adjustment.On the contrary,the surfactant contributes the least to enhance the efficiency of oil displacement.展开更多
The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oi...The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding.展开更多
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t...Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.展开更多
The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding pe...The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding performance in oil reservoirs, a multi-compositional non-isothermal CO2 miscible flooding mathematical model is developed. The convection and diffusion of CO2-hydrocarbon mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude, and formation damages caused by asphaltene precipitation are fully considered in the model. The governing equations are discretized in space using the integral finite difference method. The Newton-Raphson iterative technique was used to solve the nonlinear equation systems of mass and energy conservation. A numerical simulator, in which regular grids and irregular grids are optional, was developed for predicting CO2 miscible flooding processes. Two examples of one-dimensional (1D) regular and three-dimensional (3D) rectangle and polygonal grids are designed to demonstrate the functions of the simulator. Experimental data validate the developed simulator by comparison with 1D simulation results. The applications of the simulator indicate that it is feasible for predicting CO2 flooding in oil reservoirs for EOR.展开更多
Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement ef...Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.展开更多
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
文摘This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金Supported by the Sinopec"Ten Dragon"Major ProjectKey Research Projects of Sinopec(P22180)。
文摘There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep efficiency,gas channeling and difficult whole-process control.Through laboratory experiments,technical research and field practice,the theory and technology of CO_(2)high pressure miscible flooding and storage are established.By increasing the formation pressure to 1.2 times the minimum miscible pressure,the miscibility of the medium-heavy components can be improved,the production percentage of oil in small pores can be increased,the displacing front developed evenly,and the swept volume expanded.Rapid high-pressure miscibility is realized through advanced pressure flooding and energy replenishment,and technologies of cascade water-alternating-gas(WAG),injection and production coupling and multistage chemical plugging are used for dynamic control of flow resistance,so as to obtain the optimum of oil recovery and CO_(2)storage factor.The research results have been applied to the Gao89-Fan142 in carbon capture,utilization and storage(CCUS)demonstration site,where the daily oil production of the block has increased from 254.6 t to 358.2 t,and the recovery degree is expected to increase by 11.6 percentage points in 15 years,providing theoretical and technical support for the large-scale development of CCUS.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U21B2070)Natural Science Foundation of China(52374061)。
文摘To solve the problems of shear degradation and injection difficulties in conventional polymer flooding,the capsule polymer flooding for enhanced oil recovery(EOR)was proposed.The flow and oil displacement mechanisms of this technique were analyzed using multi-scale flow experiments and simulation technology.It is found that the capsule polymer flooding has the advantages of easy injection,shear resistance,controllable release in reservoir,and low adsorption retention,and it is highly capable of long-distance migration to enable viscosity increase in deep reservoirs.The higher degree of viscosity increase by capsule polymer,the stronger the ability to suppress viscous fingering,resulting in a more uniform polymer front and a larger swept range.The release performance of capsule polymer is mainly sensitive to temperature.Higher temperatures result in faster viscosity increase by capsule polymer solution.The salinity has little impact on the rate of viscosity increase.The capsule polymer flooding is suitable for high-water-cut reservoirs for which conventional polymer flooding techniques are less effective,offshore reservoirs by polymer flooding in largely spaced wells,and medium to low permeability reservoirs where conventional polymers cannot be injected efficiently.Capsule polymer flooding should be customized specifically,with the capsule particle size and release time to be determined depending on target reservoir conditions to achieve the best displacement effect.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China(Grant No.62201605,62341110,U22A2002)in part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.
基金This project is supported by the China National Key Basis Research Project (No: G1999022512)
文摘The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.
基金financial support from the National Natural Science Foundation of China (Grant No. 51574269)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51625403)+3 种基金the Important National Science and Technology Specific Projects of China (Grant No. 2016ZX05025-003)the Fundamental Research Funds for the Central Universities (Grant No. 15CX08004A, 18CX02169A)China Postdoctoral Science Foundation (Grant No. 2017M622319)the Natural Science Foundation of Shandong Province (Grant No. ZR2018BEE004)
文摘Streamline-adjustment-assisted heterogeneous combination flooding is a new technology for enhanced oil recovery for post-polymer-flooded reservoirs.In this work,we first carried out a series of 2D visualization experiments for different chemical flooding scenarios after polymer flooding.Then,we explored the synergistic mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery and the contribution of each component.Test results show that for single heterogeneous combination flooding,the residual oil in the main streamline area after polymer flooding is ready to be driven,but it is difficult to be recovered in the non-main streamline area.Due to the effect of drainage and synergism,the streamline-adjustment-assisted heterogeneous combination flooding diverts the injected chemical agent from the main streamline area to the non-main streamline area,which consequently expands the active area of chemical flooding.Based on the results from the single-factor contribution of the quantitative analysis,the contribution of temporary plugging and profile control of branched preformed particle gels ranks in the first place and followed by the polymer profile control and the effect of streamline adjustment.On the contrary,the surfactant contributes the least to enhance the efficiency of oil displacement.
基金supported by the National High Technology Research and Development Program of China (863 Program: 2006AA09Z315 and 2007AA090701-3)
文摘The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding.
基金Financial support for this work from National Sciencetechnology Support Plan Projects (No. 2012BAC26B00)the Science Foundation of China University of Petroleum, Beijing (No.2462012KYJJ23)
文摘Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.
基金Parts of this work were supported by the National Science and Technology Major Projects (2011ZX05009-002, 2011ZX05009–006)the Fundamental Research Funds for the Central Universities, the Project-sponsored by SRF for ROCS, SEM, and the joint research on "Investigation of Mathematical Models and Their Applications for Oil, Water and CO2 Flow in Reservoirs" between Colorado School of Mines, U.S.A and PetroChina Research Institute of Petroleum Exploration & Development (RIPED), CNPC, China
文摘The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding performance in oil reservoirs, a multi-compositional non-isothermal CO2 miscible flooding mathematical model is developed. The convection and diffusion of CO2-hydrocarbon mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude, and formation damages caused by asphaltene precipitation are fully considered in the model. The governing equations are discretized in space using the integral finite difference method. The Newton-Raphson iterative technique was used to solve the nonlinear equation systems of mass and energy conservation. A numerical simulator, in which regular grids and irregular grids are optional, was developed for predicting CO2 miscible flooding processes. Two examples of one-dimensional (1D) regular and three-dimensional (3D) rectangle and polygonal grids are designed to demonstrate the functions of the simulator. Experimental data validate the developed simulator by comparison with 1D simulation results. The applications of the simulator indicate that it is feasible for predicting CO2 flooding in oil reservoirs for EOR.
基金supported by China National Key BasicResearch Development Program under grant 2006CB705805 entitled"Commercial Utilization of Greenhouse GasEnhanced Oil Recovery and Geological Storage:Study of Nonlinear Percolation Mechanisms of Multi-phase and Multi-component Mixtures of CO2 Flooding"National Key Sci-Tech Major Special Item under grant 2008ZX05009-004 entitled"The Development of Large-scale Oil and GasFields and Coal-bed Methane:New Technology on EnhancedOil Recovery in the Later Period of Oil Field Development".
文摘Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.