The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
文章研究并解决数据中心的远程内存直接读取(remote direct memory access, RDMA)技术的网络拥塞控制问题。针对主流拥塞控制算法数据中心量化拥塞通知(data center quantized congestion notification, DCQCN)的收敛速度慢和缺乏硬件...文章研究并解决数据中心的远程内存直接读取(remote direct memory access, RDMA)技术的网络拥塞控制问题。针对主流拥塞控制算法数据中心量化拥塞通知(data center quantized congestion notification, DCQCN)的收敛速度慢和缺乏硬件实现方案的不足,提出可参数硬件化的数据中心量化拥塞通知(parameterized DCQCN,DCQCN-p)算法,该算法通过优化拥塞流的速度因子a、g调整速度比例Rc,并通过电路设计减少降速的频次;通过建立算法模型和搭建网络仿真NS-3平台,对比DCQCN-p算法在面临拥塞时单个调度流速度调整的性能以及多个调度流并发情况下的时延和吞吐量。仿真结果表明:在单个流面临拥塞时,DCQCN-p算法的数据传输速率比DCQCN算法的提高了50%;DCQCN-p算法在链路上最小速率为13.28 Gbit/s,相较于DCQCN、TIMELY、数据中心传输控制协议(data center transmission control protocol, DCTCP)算法,分别增长了24%、48%、23%;DCQCN-p算法(方差65%)的带宽分配公平性相较于TIMELY算法(方差216%)和DCTCP算法(方差191%)表现出显著的性能提升。展开更多
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
文摘文章研究并解决数据中心的远程内存直接读取(remote direct memory access, RDMA)技术的网络拥塞控制问题。针对主流拥塞控制算法数据中心量化拥塞通知(data center quantized congestion notification, DCQCN)的收敛速度慢和缺乏硬件实现方案的不足,提出可参数硬件化的数据中心量化拥塞通知(parameterized DCQCN,DCQCN-p)算法,该算法通过优化拥塞流的速度因子a、g调整速度比例Rc,并通过电路设计减少降速的频次;通过建立算法模型和搭建网络仿真NS-3平台,对比DCQCN-p算法在面临拥塞时单个调度流速度调整的性能以及多个调度流并发情况下的时延和吞吐量。仿真结果表明:在单个流面临拥塞时,DCQCN-p算法的数据传输速率比DCQCN算法的提高了50%;DCQCN-p算法在链路上最小速率为13.28 Gbit/s,相较于DCQCN、TIMELY、数据中心传输控制协议(data center transmission control protocol, DCTCP)算法,分别增长了24%、48%、23%;DCQCN-p算法(方差65%)的带宽分配公平性相较于TIMELY算法(方差216%)和DCTCP算法(方差191%)表现出显著的性能提升。