期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
1
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
2
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
Short-term forecasting optimization algorithms for wind speed along Qinghai-Tibet railway based on different intelligent modeling theories 被引量:8
3
作者 刘辉 田红旗 李燕飞 《Journal of Central South University》 SCIE EI CAS 2009年第4期690-696,共7页
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s... To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation. 展开更多
关键词 train safety wind speed forecasting wavelet analysis time series analysis Kalman filter optimization algorithm
在线阅读 下载PDF
Target distribution in cooperative combat based on Bayesian optimization algorithm 被引量:6
4
作者 Shi Zhi fu Zhang An Wang Anli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期339-342,共4页
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ... Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best. 展开更多
关键词 target distribution Bayesian network Bayesian optimization algorithm cooperative air combat.
在线阅读 下载PDF
A novel adaptive mutative scale optimization algorithm based on chaos genetic method and its optimization efficiency evaluation 被引量:5
5
作者 王禾军 鄂加强 邓飞其 《Journal of Central South University》 SCIE EI CAS 2012年第9期2554-2560,共7页
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co... By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm. 展开更多
关键词 chaos genetic optimization algorithm CHAOS genetic algorithm optimization efficiency
在线阅读 下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
6
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (ACO) algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
在线阅读 下载PDF
Optimization algorithm based on kinetic-molecular theory 被引量:2
7
作者 范朝冬 欧阳红林 +1 位作者 张英杰 艾朝阳 《Journal of Central South University》 SCIE EI CAS 2013年第12期3504-3512,共9页
Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular... Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed. 展开更多
关键词 optimization algorithm heuristic search algorithm kinetic-molecular theory DIVERSITY CONVERGENCE
在线阅读 下载PDF
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
8
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
9
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application 被引量:2
10
作者 李星梅 张立辉 +1 位作者 乞建勋 张素芳 《Journal of Central South University of Technology》 EI 2008年第1期141-146,共6页
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using... In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO. 展开更多
关键词 particle swarm extended particle swarm optimization algorithm resource leveling
在线阅读 下载PDF
An improved self-adaptive membrane computing optimization algorithm and its applications in residue hydrogenating model parameter estimation 被引量:1
11
作者 芦会彬 薄翠梅 杨世品 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3909-3915,共7页
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied... In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems. 展开更多
关键词 optimization algorithm membrane computing benchmark function improved self-adaptive operator
在线阅读 下载PDF
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:4
12
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(C2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
在线阅读 下载PDF
An optimization method: hummingbirds optimization algorithm 被引量:1
13
作者 ZHANG Zhuoran HUANG Changqiang +2 位作者 HUANG Hanqiao TANG Shangqin DONG Kangsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期386-404,共19页
This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching ph... This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching phase and a guide-searching phase. With these two phases, the exploration and exploitation abilities of the algorithm can be balanced. Both the constrained and unconstrained benchmark functions are employed to test the performance of HOA. Ten classic benchmark functions are considered as unconstrained benchmark functions. Meanwhile, two engineering design optimization problems are employed as constrained benchmark functions. The results of these experiments demonstrate HOA is efficient and capable of global optimization. 展开更多
关键词 population-based algorithm global optimization hummingbirds optimization algorithm(HOA) engineering design optimization
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
14
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:3
15
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
在线阅读 下载PDF
Optimization Algorithm in the Simulation of Ceramic Grain Growth
16
作者 ZENG Zhong-chen 1, JI Guo-li 1, XIONG Zhao-xian 2, LIU Zong-xi 1 (1. Department of Automation, Xiamen University, 2. Department of Materials Science and Engineering, Xiamen University, Xiamen 361005, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期292-,共1页
Optimization Algorithm was developed for the simula ti on of ceramic grain growth at atomistic scale. Based on the coordination informa tion of different atoms, a structure of trident tree was applied to save large q ... Optimization Algorithm was developed for the simula ti on of ceramic grain growth at atomistic scale. Based on the coordination informa tion of different atoms, a structure of trident tree was applied to save large q uantities data, so as to solve the problems of large data information and long r unning time. For every atom a binary tree was firstly formed according to the X coordination of atom. If the values of X coordination were the same, the middle sub-tree of first layer formed then a binary tree according to the Y coordinati on of atom. If the values of Y coordination were also the same, the middle sub- tree of second layer formed then a binary tree according to the Z coordination o f atom. In this way the speed of whole program is enhanced obviously. In order t o reduce memory, in this structure only need to store the exterior atoms’ infor mation, an integer is used to store the interior atoms’ information. If other a toms take up an atom’s all adjacent positions, this atom will be deleted in the data structure, for all the adjacent positions’ atoms, the integer’s relative bit will be set 1 to denote that there is an atom in this position but not be s tored in the trident tree. When an outside atom is deleted, for all the bits tha t are set 1,an atom will be added to the trident tree as an outside atom for the relative positions. And for this new added atom, the integer’s relative bi t of all the adjacent position’s atoms should be set 0 to denote that there is no interior atom in this position. In this way, if there are n 3 atoms, onl y need to store 6n 2 quantity’s atoms’ information. Large quantity of mem ory space can then be saved. 展开更多
关键词 optimization algorithm computer simulation cera mic grain growth
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
17
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
Low side lobe pattern synthesis using projection method with genetic algorithm for truncated cone conformal phased arrays 被引量:8
18
作者 Guoqi Zeng Siyin Li +1 位作者 Yan Zhang Shanwei L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期554-559,共6页
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con... A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible. 展开更多
关键词 conformal phased array low side lobe pattern synthe-sis projection method genetic algorithm optimization.
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
19
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale optimization algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:16
20
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部