In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
A class of parallel Runge-Kutta Methods for differential-algebraic equations of index 2are constructed for multiprocessor system. This paper gives the order conditions and investigatesthe convergence theory for such m...A class of parallel Runge-Kutta Methods for differential-algebraic equations of index 2are constructed for multiprocessor system. This paper gives the order conditions and investigatesthe convergence theory for such methods.展开更多
In this paper, with the Kronecker's product and Kronecker's sum of matrices, the 2nd order moment equations of linear Ito stochastic systems are dervided. Based on the moment equations obtained, a necessary an...In this paper, with the Kronecker's product and Kronecker's sum of matrices, the 2nd order moment equations of linear Ito stochastic systems are dervided. Based on the moment equations obtained, a necessary and sufficient condition for the mean-square asymptotic stability of linear Ito stochastic systems is obtained.For the time-invariant stochastic systems,the necessary and sufficient condition is just the same as the Hurwitz property of certain matrices related to the coefficient matrices of the systems. An algorithm STILSS is given for testing the mean-square asymptotic stability of time-invariant linear Ito stochastic systems.展开更多
Numerical methods for Differential-Algebraic systems with discontinuous right-hand sides is discussed. A class of continuous Rosenbrock methods are constructed, and numerical experiments show that the continuous Rosen...Numerical methods for Differential-Algebraic systems with discontinuous right-hand sides is discussed. A class of continuous Rosenbrock methods are constructed, and numerical experiments show that the continuous Rosenbrock methods are effective. Applying the methods, a fast and high-precision numerical algorithm is given to deal with typical discontinuous parts, which occur frequently in differential-algebraic systems(DAS).展开更多
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
文摘A class of parallel Runge-Kutta Methods for differential-algebraic equations of index 2are constructed for multiprocessor system. This paper gives the order conditions and investigatesthe convergence theory for such methods.
文摘In this paper, with the Kronecker's product and Kronecker's sum of matrices, the 2nd order moment equations of linear Ito stochastic systems are dervided. Based on the moment equations obtained, a necessary and sufficient condition for the mean-square asymptotic stability of linear Ito stochastic systems is obtained.For the time-invariant stochastic systems,the necessary and sufficient condition is just the same as the Hurwitz property of certain matrices related to the coefficient matrices of the systems. An algorithm STILSS is given for testing the mean-square asymptotic stability of time-invariant linear Ito stochastic systems.
文摘Numerical methods for Differential-Algebraic systems with discontinuous right-hand sides is discussed. A class of continuous Rosenbrock methods are constructed, and numerical experiments show that the continuous Rosenbrock methods are effective. Applying the methods, a fast and high-precision numerical algorithm is given to deal with typical discontinuous parts, which occur frequently in differential-algebraic systems(DAS).