期刊文献+
共找到78,259篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Euclidean Algorithm and Reection on Its Teaching
1
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于ISSA优化EEMD的用户侧电力负荷预测方法
2
作者 石文娟 凌凡 +2 位作者 张俊权 宋振世 李力 《信息技术》 2025年第2期97-103,共7页
为减少负荷预测结果误差,提出基于混合改进麻雀搜索算法(ISSA)优化集合经验模态分解(EEMD)的电力负荷预测方法。获取用户历史用电信息,通过奇异值分解算法去除噪声数据,并利用差分自回归滑动平均模型完成平滑处理。针对集合经验模态分... 为减少负荷预测结果误差,提出基于混合改进麻雀搜索算法(ISSA)优化集合经验模态分解(EEMD)的电力负荷预测方法。获取用户历史用电信息,通过奇异值分解算法去除噪声数据,并利用差分自回归滑动平均模型完成平滑处理。针对集合经验模态分解所需的参数建立优化目标函数,依托于ISSA算法求出最优参数组合。通过分析历史电力负荷数据,将其输入基于广义回归神经网络的预测模型,输出电力负荷预测值。实验结果表明:所提方法预测结果的相对误差控制在0.1以下,可满足用户侧电力负荷预测要求。 展开更多
关键词 issa 集合经验模态分解 用户侧 负荷 参数优化
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
3
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning Fusion algorithm
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
4
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) Improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
DDoS Attack Tracking Using Multi-Round Iterative Viterbi Algorithm in Satellite Internet
5
作者 Guo Wei Xu Jin +2 位作者 Pei Yukui Yin Liuguo Feng Wei 《China Communications》 2025年第3期148-163,共16页
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ... Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI. 展开更多
关键词 DDoS tracking iterative Viterbi algorithm satellite Internet 6G
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
6
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
基于ISSA-P&O算法的光储发电系统MPPT控制技术
7
作者 李晓峰 杨祺 +3 位作者 姜铭琨 倪昊 王珣 靳文星 《可再生能源》 北大核心 2025年第3期400-407,共8页
针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA... 针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。 展开更多
关键词 光伏阵列 最大功率点跟踪 改进麻雀搜索算法 扰动观察法 萤火虫扰动算法
在线阅读 下载PDF
一种基于ISSA-BP神经网络的火控系统故障预测方法
8
作者 孟新冉 李英顺 +1 位作者 王德彪 杨松 《火炮发射与控制学报》 北大核心 2025年第1期52-58,共7页
陀螺仪组能够产生高低方向和水平方向上的稳定和瞄准信号,同时也能够为系统提供火炮更新位置之后的驱动信号,在整个火控系统中发挥着非常关键的作用,因此对陀螺仪组的故障预测非常重要。为了提高预测准确性,提出一种融合正余弦算法和Lev... 陀螺仪组能够产生高低方向和水平方向上的稳定和瞄准信号,同时也能够为系统提供火炮更新位置之后的驱动信号,在整个火控系统中发挥着非常关键的作用,因此对陀螺仪组的故障预测非常重要。为了提高预测准确性,提出一种融合正余弦算法和Levy飞行改进麻雀算法(ISSA)优化BP神经网络的预测方法。利用Circle混沌映射初始化种群,在发现者位置更新时,引入非线性动态学习因子以及融合正余弦的思想,在追随者更新位置时,引入Levy飞行策略,建立ISSA-BP故障预测模型。为了验证模型预测的精度,同时与BP模型、PSO-BP模型、GWO-BP模型、SSA-BP模型进行实验对比,实验结果显示ISSA-BP模型比其他4种模型预测精度更高。 展开更多
关键词 Circle混沌映射 故障预测 火控系统 BP神经网络 麻雀搜索算法
在线阅读 下载PDF
基于ISSA-XGBoost模型的多特征融合露天矿卡车行程时间预测
9
作者 顾清华 王燕 +1 位作者 王倩 魏瑾瑜 《有色金属(矿山部分)》 2024年第1期1-10,共10页
针对露天矿运输系统卡车行程时间预测问题,提出了一种基于特征选择及改进麻雀算法优化XGBoost的露天矿卡车行程时间预测模型。模型充分考虑了卡车特征、道路特征、气象特征以及时间特征对卡车行程时间的影响,并使用皮尔逊系数法深入分... 针对露天矿运输系统卡车行程时间预测问题,提出了一种基于特征选择及改进麻雀算法优化XGBoost的露天矿卡车行程时间预测模型。模型充分考虑了卡车特征、道路特征、气象特征以及时间特征对卡车行程时间的影响,并使用皮尔逊系数法深入分析影响因素的贡献度。针对麻雀算法中全局搜索能力薄弱的问题引入反向学习和螺旋搜索策略,以提高算法的收敛性能。最后,使用改进的麻雀算法对XGBoost的关键参数进行寻优,进而构建露天矿卡车行程时间预测模型。选取国内某大型露天矿卡车调度系统采集的数据进行仿真模拟,并将所提出模型与SVM、BP、RBF和RF等其他机器学习模型进行对比。结果表明:所提出模型的预测误差均低于其他模型,相关系数可达0.9819。开发的模型和分析结果可以极大地帮助决策者规划、运营和管理更高效的露天矿运输系统。 展开更多
关键词 行程时间预测 露天矿卡车 XGBoost 改进麻雀算法 均值滤波
在线阅读 下载PDF
基于ISSA-VMD的地铁构架应力谱门槛值自适应确定方法
10
作者 薛海 叶层林 +1 位作者 和永峰 陈江涛 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第4期180-188,共9页
针对地铁构架应力谱编制过程中小应力循环舍弃缺乏标准可依的问题,提出基于改进麻雀搜索算法(ISSA)和应力-时间历程信号变分模态分解(VMD)的应力谱门槛值自适应确定方法。首先,通过融合Tent混沌映射、鱼鹰优化算法和柯西变异策略改进麻... 针对地铁构架应力谱编制过程中小应力循环舍弃缺乏标准可依的问题,提出基于改进麻雀搜索算法(ISSA)和应力-时间历程信号变分模态分解(VMD)的应力谱门槛值自适应确定方法。首先,通过融合Tent混沌映射、鱼鹰优化算法和柯西变异策略改进麻雀搜索算法,从而避免陷入局部最优,提高分析效率;其次,采用ISSA优化VMD的分解个数和惩罚因子,实现关键参数确定;最后,根据最优参数组合,对应力信号进行VMD分解,并结合疲劳损伤占比、均方根和均方误差等参数对分解得到不同分量信号的中心频率进行综合分析,提取损伤占比较大的信号频率作为截止频率,从频域层面实现小应力门槛值的确定。结果表明:采用此方法确定的小应力门槛值使得应力雨流循环总数降低17.1%,实际损伤较传统方法所得结果减少7.8%,在有效反映应力所造成疲劳效应的同时保留了应力循环特性,提高了应力谱编制效率,从而为地铁构架应力谱编制过程中小应力门槛值的合理确定提供了参考。 展开更多
关键词 地铁构架 应力谱 小应力门槛值 疲劳损伤 issa-VMD
在线阅读 下载PDF
基于RBFNN-ISSA的特大跨径悬索桥有限元模型修正 被引量:1
11
作者 王祺顺 何维 +2 位作者 吴欣 郭伟奇 雷顺成 《振动与冲击》 EI CSCD 北大核心 2024年第7期155-167,共13页
针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首... 针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首先,基于桥梁图纸数据采用通用有限元软件建立一座大跨悬索桥的初始有限元模型,并根据拉丁超立方抽样原则生成子结构材料参数-结构响应的训练样本,通过RBF神经网络和子结构模拟方法对初始有限元模型进行解构重组和样本学习,拟合关于材料参数-结构响应的代理模型。其次,建立考虑主梁挠度和模态频率误差最小的有限元模型参数修正数学优化模型,采用Tent混沌映射及黄金正弦策略改进标准麻雀搜索算法,引入柯西分布函数和贪心保留策略对每一代麻雀种群进行扰动,以用于求解联合静、动力特征的有限元模型修正数学优化问题。最后,以杭瑞高速洞庭湖大桥为工程背景,进行了悬索桥荷载试验,利用实测桥梁响应数据验证了该方法的可行性。研究结果表明:基于RBF神经网络与子结构法的模型修正方法,可以建立拟合精度较高的悬索桥结构代理模型;基于子结构RBF神经网络与改进麻雀搜索算法修正后的有限元模型相较于整体RBF神经网络、支持向量机和Kriging模型,大幅提升了对于实际结构的模拟精度,与实测数据相比,修正前后有限元模型在两级静力加载工况下13个有效测点挠度的平均相对误差降低了25%以上,前8阶模态频率的平均相对误差由-6.83%降至-2.38%,MAC值结果表明修正后模型能够准确地反映出大桥的实际振动状态,有效改善了初始有限元模型计算失真的情况;此外,基于混合策略改进后的麻雀搜索算法对于有限元模型修正参数的寻优具有更佳的收敛效率和稳定性。 展开更多
关键词 桥梁工程 有限元模型修正 改进麻雀搜索算法(issa) 悬索桥 径向基神经网络(RBFNN) 柯西变异策略
在线阅读 下载PDF
基于ISSA-ELM的船舶压载水系统故障诊断研究
12
作者 王曼绮 曹辉 +1 位作者 张琦 张宝中 《舰船科学技术》 北大核心 2024年第19期36-41,共6页
为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,... 为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,获得ISSA并验证其性能;而后利用改进后的麻雀搜索算法对ELM的初始输入权重和阈值进行优化,建立基于ISSA-ELM的故障诊断模型。结果表明,ISSA-ELM模型的故障诊断精度为96.6%,比SSAELM、PSO-ELM、GWO-ELM模型高出1.8%、3.5%和2.6%,比ELM和SVM模型高出4.5%和7.1%。 展开更多
关键词 船舶压载水系统 故障诊断 极限学习机(ELM) 改进麻雀搜索算法(issa)
在线阅读 下载PDF
基于SFLA和MSISSA-ANFIS的超短期光伏功率动态预测方法 被引量:1
13
作者 李练兵 高国强 +3 位作者 陶鹏 张超 赵莎莎 陈伟光 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期326-335,共10页
为进一步提高光伏功率预测的精度,提出一种基于SFLA、MSISSA和ANFIS的超短期光伏功率日内动态预测模型。首先针对ANFIS模型受成员函数影响较大的缺点采用MSISSA对其进行优化,并结合SFLA选取相似日的方法,构建基于SFLA和MSISSA-ANFIS的... 为进一步提高光伏功率预测的精度,提出一种基于SFLA、MSISSA和ANFIS的超短期光伏功率日内动态预测模型。首先针对ANFIS模型受成员函数影响较大的缺点采用MSISSA对其进行优化,并结合SFLA选取相似日的方法,构建基于SFLA和MSISSA-ANFIS的功率预测模型。然后根据相关性较高的功率、气象特征与相似日集合构建特征向量对未来4 h的光伏功率进行预测。最后将从小型气象站获得的实时更新的未来气象数据存入数据库,每隔15 min预测一次,实现光伏功率的日内动态预测。结果表明所提方法提高了超短期光伏预测的精度。 展开更多
关键词 光伏功率预测 时间序列 自适应神经模糊推理系统 算法优化 相似日选取
在线阅读 下载PDF
基于ISSA-LSTM模型的可再生能源电力需求预测 被引量:3
14
作者 闫晓霞 刘娴 《西安科技大学学报》 CAS 北大核心 2024年第3期604-614,共11页
为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LS... 为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LSTM)以有效捕捉可再生能源电力需求随机波动性和时序性;最后,通过ISSA-LSTM模型预测长期可再生能源的电力需求,验证测试集数据,并与其他传统模型进行对比。结果表明:ISSA-LSTM模型预测结果能够满足对可再生能源电力需求预测的精度要求;在未来2023-2030年可再生能源电力需求稳定,波动幅度不大,可达到全国用电量的1/3;利用Circle混沌映射改进策略能有效提升SSA寻优能力。与PSO算法相比,SSA算法寻找LSTM超参数最优解的能力更优,ISSA-LSTM模型预测可再生能源电力需求精度更高。 展开更多
关键词 混合预测模型 麻雀搜索算法 长短期记忆网络 Circle混沌映射 电力需求预测
在线阅读 下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:4
15
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
16
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
基于功率特征的K-ISSA-LSTM光伏功率预测 被引量:2
17
作者 金伟勇 卢丽娜 +1 位作者 赖欢欢 张森林 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期429-434,共6页
历史功率特征能反映一段时间内光伏功率的波动情况,结合聚类算法对原始数据进行聚类,利用长短期记忆神经网络实现对光伏发电功率的预测。同时使用改进的麻雀搜索算法进行神经网络超参数寻优,实现对不同功率特征场景的超参数优化。采用... 历史功率特征能反映一段时间内光伏功率的波动情况,结合聚类算法对原始数据进行聚类,利用长短期记忆神经网络实现对光伏发电功率的预测。同时使用改进的麻雀搜索算法进行神经网络超参数寻优,实现对不同功率特征场景的超参数优化。采用华东地区某光伏电站的实测数据进行验证,预测模型功率波动情况下较传统预测方法对该组数据有更高的预测精度。 展开更多
关键词 光伏功率 预测 聚类算法 长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于SVMD-ISSA-CNN-TGLSTM的供热负荷预测模型 被引量:1
18
作者 薛贵军 牛盼 +1 位作者 谢文举 李水清 《现代电子技术》 北大核心 2024年第11期131-139,共9页
针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM... 针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM模型;其次,考虑到负荷序列的非平稳特征,采用SVMD分解,并引用改进的麻雀搜索算法来优化模型的参数,避免调参陷入局部最优;最后,将不同模型之间的预测效果与经济效益进行对比。结果表明:SVMD-ISSA-CNN-TGLSTM模型经济效益最高,评价指标RMSE、MSE、MAE相比ISSA-CNN-TGLSTM模型分别降低了35.7%、59.0%、32.7%,且均优于其他不同模型,预测效果最佳。 展开更多
关键词 供热负荷预测 逐次变分模态分解 改进的麻雀搜索算法 卷积神经网络 转换门控长短期记忆神经网络 空间提取能力
在线阅读 下载PDF
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm 被引量:1
19
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling Closed-loop drilling Lithology identification Random forest algorithm Feature extraction
在线阅读 下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
20
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部