期刊文献+
共找到2,931篇文章
< 1 2 147 >
每页显示 20 50 100
基于PSO-GA模型的供水管网漏损预测研究 被引量:1
1
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 PSO-ga算法 漏损定位 EPANET
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:1
2
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于GA-PSO优化的汽车轨迹跟踪和稳定性协同控制
3
作者 田韶鹏 吴思沛 王龙 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期10-19,共10页
针对恶劣工况下汽车轨迹跟踪控制的精度和稳定性问题,提出一种基于分层控制策略的解决方案。上层轨迹跟踪控制器和下层直接横摆力矩控制器分别基于模型预测控制(model predictive control,MPC)和滑模控制(sliding mode control,SMC)实现... 针对恶劣工况下汽车轨迹跟踪控制的精度和稳定性问题,提出一种基于分层控制策略的解决方案。上层轨迹跟踪控制器和下层直接横摆力矩控制器分别基于模型预测控制(model predictive control,MPC)和滑模控制(sliding mode control,SMC)实现;通过遗传粒子群优化算法(GA-PSO)优化不同车速和路面附着系数下的控制器参数,得到适用于不同驾驶条件的最佳控制器时域和控制参数;基于此设计协同控制器,进一步改善了轨迹跟踪的准确性和稳定性。为验证策略有效性,在CarSim-Simulink联合仿真平台进行仿真实验。仿真结果表明:所提出控制策略能显著提升追踪效果和横摆稳定性,平均横向误差分别减少89.9%、46.4%和43.3%。 展开更多
关键词 智能车辆 轨迹跟踪 稳定性控制 模型预测控制 滑模控制 遗传粒子群算法
在线阅读 下载PDF
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
4
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(ga) mining perfor-mance
在线阅读 下载PDF
基于GA-Prophet模型的变电站基坑变形安全预测研究与应用
5
作者 王文强 燕波 +5 位作者 齐壮 王飞 田庆 王永维 何文敏 杨超 《水利水电技术(中英文)》 北大核心 2025年第4期107-117,共11页
【目的】基坑变形的监测是保证基坑施工安全的重要保障,为提高监测数据的应用价值及确保基坑的施工安全,以陕西省西安市某330 kV变电站基坑工程为项目依托,基于实际变形监测结果【方法】以均方误差MSE作为遗传算法(GA)的适应度函数,对Pr... 【目的】基坑变形的监测是保证基坑施工安全的重要保障,为提高监测数据的应用价值及确保基坑的施工安全,以陕西省西安市某330 kV变电站基坑工程为项目依托,基于实际变形监测结果【方法】以均方误差MSE作为遗传算法(GA)的适应度函数,对Prophet模型中的趋势项、周期项和节假日项(偶发事件项)参数进行优化,并重点考虑与基坑变形规律相一致的趋势项参数,构建GA-Prophet基坑变形预测模型,并以MAE、RSS、RMSE和Theil不等系数值为评价指标,验证本模型的可行性及有效性,同时使用该模型对基坑水平及竖向变形进行超前预测,以评价基坑结构的安全状态。【结果】结果表明:GA-Prophet模型预测结果曲线与实测数据曲线较为接近,归功于预测模型中选用了符合实际工程位移变化规律的饱和模型,以JC8测点水平位移预测结果为例,该模型预测结果的MAE、RSS、RMSE、Theil不等系数值分别为0.480、1.310、0.512和0.052,均优于Prophet、LSTM、ARIMA和BP模型的预测结果;并且该模型对基坑变形的超前预测结果显示,各测点水平及竖向变形预测最大值均未超过规范要求的变形报警值,基坑结构处于安全状态。【结论】该模型对于基坑变形预测具有较好的适用性,提高了预测结果的准确性,可用于基坑变形安全预测。 展开更多
关键词 变电站基坑 变形监测 遗传算法 ga-Prophet模型 超前预测 影响因素
在线阅读 下载PDF
基于IABC-GA的管路协同机舱设备布局优化方法研究
6
作者 王文双 杨远松 +2 位作者 刘海洋 杨明君 林焰 《大连理工大学学报》 CAS 北大核心 2025年第1期67-78,共12页
为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径... 为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径寻优的改进算法,结合协同进化思想,将船舶机舱整体布局优化问题拆解为互相关联的设备布局问题和管路布局问题,两者在相互影响的情况下协同进化,最终得到最佳的船舶机舱布局设计方案.通过对实船机舱的仿真实验,验证了管路协同设备布局优化方法的可行性与可靠性.设备布局方面,与原始设备布局相比效果提升59.5%;船舶机舱整体布局方面,与先进行设备布局优化再进行管路布局优化相比效果提升11.8%. 展开更多
关键词 改进人工蜂群遗传算法(IABC-ga) 船舶机舱 设备布局优化 协同进化
在线阅读 下载PDF
基于改进RRT与GA的多目标路径规划——以无人机林区巡检为例
7
作者 张彪 康峰 许舒婷 《北京林业大学学报》 北大核心 2025年第4期129-141,共13页
【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法... 【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法】首先改进传统GA,使其能够在三维空间中遍历所有巡检点并求解最优序列。其次,依据该序列进行路径搜索,改进RRT算法的随机采样原理,通过靶心和绕树策略实现避障效果,并采用连续选择父节点策略,取消因避障产生的多余转折点。最后,通过3次B样条曲线优化,生成最终路径。【结果】仿真结果表明,本算法能够在复杂林区环境中遍历所有巡检点,并在短时间内规划出高质量、无碰撞的路径。与粒子群算法(PSO)、蚁群算法(ACO)和RRT算法相比,当巡检点从3个增加到9个时,PSO、ACO、RRT算法搜索时间分别增加了221.77%、332.42%、184.78%,而本算法仅增加了102.35%。在9个巡检点的复杂环境中,本算法的路径耗散分别比PSO、ACO和RRT算法降低了14.46%、30.28%、24.76%,且路径质量显著提高,消除了路径交叉重合现象。此外,通过ROS平台,利用无人机在林区点云上进行模拟飞行并验证成功,证明本算法适用于林区巡检的多目标路径规划。【结论】针对人工林区无人机巡检任务中的飞行路线规划问题,本文通过改进RRT与GA,成功规划出一条遍历所有巡检点且避开林区障碍物的无碰撞路径。相较于PSO、ACO和RRT算法,本算法在路径质量、路径耗散和搜索时间上均表现出显著优势。 展开更多
关键词 多目标优化 路径规划 快速随机扩展树(RRT) 遗传算法(ga) 无人机 粒子群算法(PSO) 蚁群算法(ACO)
在线阅读 下载PDF
基于非对称差动控制方式的磁轴承GA-LQG控制器研究
8
作者 许建文 谢振宇 +1 位作者 肖锋 许绍瀚 《机电工程》 北大核心 2025年第7期1213-1225,1257,共14页
为了提高磁轴承的承载能力,改善磁悬浮转子系统的动态性能,设计了基于非对称差动控制方式的磁轴承遗传算法(GA)线性二次型高斯(LQG)控制器。首先,对比分析了磁轴承常规差动控制方式与非对称差动控制方式的工作原理;然后,根据磁悬浮转子... 为了提高磁轴承的承载能力,改善磁悬浮转子系统的动态性能,设计了基于非对称差动控制方式的磁轴承遗传算法(GA)线性二次型高斯(LQG)控制器。首先,对比分析了磁轴承常规差动控制方式与非对称差动控制方式的工作原理;然后,根据磁悬浮转子系统状态空间方程设计了线性二次调节(LQR)高斯控制器,并在LQR控制器基础上,引入卡尔曼滤波器,构成LQG;接着,在MATLAB中编写GA,在Simulink中搭建了闭环磁悬浮转子系统模型,利用GA强大的全局搜索能力对LQG控制器进行了参数优化;最后,利用所设计的GA-LQG控制器完成了系统静态悬浮、磁轴承实际承载力检测与系统高速旋转试验。研究结果表明:磁轴承的名义承载力提升40%,实际承载力提升35.57%;飞轮转子能够在12000 r/min下稳定运行且振动峰峰值小于18μm,在整个升速过程中最大振动峰峰值小于36μm。由此可见,采用非对称差动控制方式,在不改变磁轴承机械结构尺寸前提下可以有效提升磁轴承的承载能力;采用GA-LQG控制器,能够使磁悬浮转子系统具有较好的动态性能。 展开更多
关键词 磁悬浮轴承 磁轴承控制算法 名义/实际承载力 动态性能 线性二次型高斯控制器 遗传算法 线性二次调节器
在线阅读 下载PDF
An improved genetic algorithm for causal discovery
9
作者 MAO Tengjiao BU Xianjin +2 位作者 CAI Chunxiao LU Yue DU Jing 《Journal of Systems Engineering and Electronics》 2025年第3期768-777,共10页
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to... The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm. 展开更多
关键词 genetic algorithm(ga) causal discovery convergence rate fitness function mutation operator
在线阅读 下载PDF
基于数据融合及GA-BP算法的GEO高能电子通量预测
10
作者 陈建飞 方美华 +2 位作者 吴康 宋定一 王彪 《中国空间科学技术(中英文)》 北大核心 2025年第2期124-132,共9页
为了提高GEO大于2 MeV电子通量提前一天的预测效率,采用基于模拟退火算法和最小二乘拟合的数据融合算法处理GOES系列卫星电子通量数据,以融合后的数据为基础建立遗传算法优化BP神经网络(GA-BP)模型。模型输入参数包括太阳风速度、地磁指... 为了提高GEO大于2 MeV电子通量提前一天的预测效率,采用基于模拟退火算法和最小二乘拟合的数据融合算法处理GOES系列卫星电子通量数据,以融合后的数据为基础建立遗传算法优化BP神经网络(GA-BP)模型。模型输入参数包括太阳风速度、地磁指数(包括SYM/H、Ap、AU、AE、Dst)、大于0.6 MeV电子积分通量和大于2 MeV电子积分历史通量,各参数的时间分辨率均为日均值;同时以1999-2007年的数据为训练集,使用数据融合后的GA-BP模型预测2008-2010年的电子积分通量,将预测结果与其他经典模型的预测结果进行比较。结果表明:采用模拟退火算法将位于75°W区域的卫星数据投影到135°W区域,数据误差变小,融合效果更好;大于2 MeV电子通量提前1天预测效率为0.863,最高预测效率可达0.931,优于以往很多模型的预测精度。 展开更多
关键词 GEO卫星 ga-BP算法 模拟退火算法 数据融合 高能电子通量预测 深层充电
在线阅读 下载PDF
基于GA-BP算法的汽车前端框架翘曲变形优化及验证
11
作者 林煌旭 孔选 +3 位作者 陆将男 周华江 朱国常 朱浩伟 《工程塑料应用》 北大核心 2025年第1期90-97,共8页
针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺... 针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺参数与翘曲变形量之间的映射关系并建立单目标非线性优化模型。利用GA遗传算法改良的BP神经网络进一步描述优化模型的非线性函数关系,以适应度曲线迭代收敛预测得到最佳的BP网络模型预测工艺参数分别为:模具温度60℃、熔体温度265℃、保压压力55MPa、保压时间4s、冷却时间35s,最大翘曲变形量为1.191mm。最后将最优工艺参数导入Moldflow中模拟得到最大翘曲变形量为1.33mm,较优化前初始翘曲量2.423 mm降低了45.1%。经GA-BP算法优化后的工艺参数应用于生产制造过程,前端框架注塑件偏差测量结果表明,实际测量值与优化后Moldflow模拟值拟合度较高,两者平均偏差为0.28mm,满足整车装配要求,证实了GA-BP神经网络预测模型用于优化前端框架翘曲变形的可行性。 展开更多
关键词 汽车前端框架 翘曲变形 MOLDFLOW 正交试验法 ga遗传算法 BP神经网络模型
在线阅读 下载PDF
基于IGA-POA算法的散料堆双天车调度问题求解方法
12
作者 尹鑫 王立亚 +1 位作者 杨爱民 郝星晖 《机电工程》 北大核心 2025年第7期1309-1320,共12页
针对散料堆双无人天车协同调度中存在的任务划分复杂度高、避碰频率高等问题,构建了多重约束条件下的双无人天车最小路径优化模型,并提出了一种基于遗传算法(GA)和鹈鹕算法(POA)的模型求解方法——融合算法(IGA-POA)。首先,基于调度过... 针对散料堆双无人天车协同调度中存在的任务划分复杂度高、避碰频率高等问题,构建了多重约束条件下的双无人天车最小路径优化模型,并提出了一种基于遗传算法(GA)和鹈鹕算法(POA)的模型求解方法——融合算法(IGA-POA)。首先,基于调度过程中的影响因素,建立了双无人天车调度模型,同时构建了改进自适应各向异性高斯滤波器(IAAGF)任务划分模型,并设计了天车调度优先级规则与避让规则,优化了任务区块划分和避让策略;然后,提出了IGA-POA算法,在遗传算法中使用双层编码和混合选择策略生成了初始种群,对交叉算子进行了分段自适应匹配改进,并对变异算子进行了混合自适应优化;同时,设计了优质种群策略,完成了遗传算法和鹈鹕算法的有效融合,在鹈鹕算法中引入了黄金正弦函数,优化了逼近猎物策略;最后,基于调度任务划分的结果,进行了仿真实验,分析了IGA-POA算法在消融、对比实验和仿真测试中的性能。研究结果表明:IGA-POA算法的平均避让次数低于其他算法,并在最小平均任务路径上取得最优值,分别为25.58、50.34和73.91,且平均耗时仅增加4.63%,验证了IGA-POA算法的有效性和可靠性。 展开更多
关键词 物流装卸和搬运 双无人天车调度模型 遗传算法 鹈鹕算法 分段自适应匹配 优质种群策略 黄金正弦函数
在线阅读 下载PDF
基于VMD和GA-BiLSTM组合模型的河流水质预测
13
作者 张海霞 李瑞 +3 位作者 王霞 赵泽霏 康彦付 孙岩 《环境工程技术学报》 北大核心 2025年第4期1181-1188,共8页
溶解氧(DO)是河流水质监测的关键指标之一,为了精准预测河流水体中DO浓度,融合变分模态分解(VMD)、遗传算法(GA)和双向长短期记忆神经网络(BiLSTM),构建了VMD-GA-BiLSTM深度学习组合模型,对邢台市艾辛庄断面2020—2023年的DO浓度数据进... 溶解氧(DO)是河流水质监测的关键指标之一,为了精准预测河流水体中DO浓度,融合变分模态分解(VMD)、遗传算法(GA)和双向长短期记忆神经网络(BiLSTM),构建了VMD-GA-BiLSTM深度学习组合模型,对邢台市艾辛庄断面2020—2023年的DO浓度数据进行了训练与测试,并与多个经典的深度学习模型(BiLSTM、GA-BiLSTM、EMD-GA-BiLSTM)预测结果进行对比。结果表明:VMD-GA-BiLSTM模型在测试集上的均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R^(2))分别为0.149、0.135和0.974,相较于BiLSTM、GA-BiLSTM、EMD-GA-BiLSTM模型,RMSE分别降低0.464、0.307、0.290,MAE分别降低0.413、0.173、0.239,R^(2)分别提升了0.216、0.133、0.088,表明构建的模型预测精度最高。将构建模型应用于邢台市后西吴桥断面对pH、DO和氨氮3项水质指标进行验证,与其他经典模型相比,VMD-GA-BiLSTM模型的RMSE、MAE最小且R²最大,可见其在水质时间序列数据预测方面具高度的通用性和稳定性。VMD-GA-BiLSTM模型能够准确预测DO浓度以及其他水质指标浓度,为水资源的可持续利用和水环境保护提供科学依据。 展开更多
关键词 河流 水质预测 溶解氧 变分模态分解 遗传算法 双向长短期记忆神经网络(BiLSTM)
在线阅读 下载PDF
Salt and Pepper Noise Filter Based on GA-BP Algorithm Noise Detector 被引量:2
14
作者 宋寅卯 李晓娟 《光电工程》 CAS CSCD 北大核心 2011年第2期59-64,共6页
基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网... 基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网络对图像中的噪声像素定位,然后引入保边函数和PRP算法求目标函数的极值进而实现图像的去噪处理。实验结果表明,该算法比传统滤波算法效果有明显改善,且具有良好的泛化性、鲁棒性和自适应性。 展开更多
关键词 ga-BP算法 椒盐噪声 噪声检测 保边函数 PRP算法
在线阅读 下载PDF
基于SPA-GA-SVR模型的土壤水分及温度预测 被引量:10
15
作者 朱成杰 汪正权 《中国农村水利水电》 北大核心 2024年第1期30-36,共7页
土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测... 土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测量,所获得的高光谱数据包含大量的噪声及冗余信息,因此首先用Savitzky-Golay卷积平滑对光谱数据进行降噪处理,利用连续投影算法(Successive Projection Algorithm,SPA)提取数据特征波长,然后通过遗传算法(Genetic Algorithm,GA)对支持向量机回归(Support Vector Regression,SVR)的超参数权值和偏置进行优化,构建SPA-GASVR混合算法模型对土壤水分和温度进行预测,并与BP神经网络(Back Propagation Neural Network,BPNN)、SPA-BP、SVR、SPA-SVR、GA-SVR这5种模型的预测性能进行比较。实验结果表明:各模型在土壤湿度低于30%的情况下,表现出的预测能力差异并不显著。但整体上,复合模型相比于单一的神经网络或机器学习模型具有明显的优势,且经过连续投影算法优化的模型进一步的提高其预测能力,最终SPA-GA-SVR算法在各项指标上均优于其他模型,土壤水分预测模型的R^(2)=0.981、RMSE=0.473%,土壤温度预测模型R^(2)=0.963、RMSE=0.883℃。实验证明基于高光谱数据,经过SPA和GA优化的SVR模型能实现对土壤湿度和温度精准的预测。该方法具有一定的应用价值和现实意义,可应用于便携式高光谱仪和无人机上,实现对土壤水分和温度的实时监测,为今后的播种及灌溉提供理论参考。 展开更多
关键词 土壤水分 土壤温度 高光谱 连续投影算法(SPA) 遗传算法-支持向量机回归(ga-SVR)
在线阅读 下载PDF
基于GA-LSTM自适应卡尔曼滤波的路面不平度识别 被引量:6
16
作者 李韶华 李健玮 冯桂珍 《振动与冲击》 EI CSCD 北大核心 2024年第9期121-130,共10页
准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-t... 准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-term memory networks,LSTM)自适应卡尔曼滤波的路面不平度识别算法。基于2自由度车辆悬架模型,通过灰色关联法选择LSTM神经网络的特征输入变量,并采用GA优化LSTM神经网络的模型参数以准确识别路面等级,并据此实时更新卡尔曼滤波器算法中的噪声矩阵,实现了在复杂路况下对路面不平度的自适应识别。仿真和试验研究表明,所提出的基于GA-LSTM自适应卡尔曼滤波算法能够快速准确的识别路面不平度与路面等级,与传统卡尔曼滤波算法相比,相关系数、均方根误差和最大绝对误差分别提高3.11%、37.5%和51.2%,表明所提算法对复杂工况具有很好的自适应能力。 展开更多
关键词 路面不平度识别 自适应卡尔曼滤波器 ga-LSTM 灰色关联法
在线阅读 下载PDF
基于DE-GA算法的阵列天线故障检测方法 被引量:1
17
作者 南敬昌 陈鑫 严洁 《电子测量与仪器学报》 CSCD 北大核心 2024年第11期33-39,共7页
为提高阵列天线故障检测的精度,提出了一种改进差分-遗传(DE-GA)算法。该算法融合了遗传(GA)算法和差分进化(DE)算法,在基因遗传过程中采取染色体双交叉策略,对陷入局部陷阱的个体信息进行重新引导;利用自适应权重优化后代的选择过程,... 为提高阵列天线故障检测的精度,提出了一种改进差分-遗传(DE-GA)算法。该算法融合了遗传(GA)算法和差分进化(DE)算法,在基因遗传过程中采取染色体双交叉策略,对陷入局部陷阱的个体信息进行重新引导;利用自适应权重优化后代的选择过程,提高算法对故障因子的灵敏性和适应能力。本文将该算法用于阵列天线的故障检测中,通过阵列公式建立天线的模型,对该模型的辐射方向图进行优化,使其与故障天线的已知辐射方向图逐渐拟合,以此推出故障阵列幅值。实验表明,本文提出的DE-GA算法与DE算法、GA算法相比,适应度函数值最低点分别减小了11.15%和12.90%,平均绝对误差分别减小了19.36%和23.85%,均方误差分别减小了12.90%和11.15%,最大误差分别减小了12.30%和13.18%,具有更高的准确率,拟合能力更强。此外,在原有实验的基础上改变阵列的数量,该算法依然具有优良的稳定性,证明能够满足对大数量阵列的故障检测。 展开更多
关键词 阵列天线 故障检测 DE-ga算法 双交叉策略 自适应权重
在线阅读 下载PDF
基于FCM-GA灌溉供水管网减压阀布设优化 被引量:2
18
作者 常子峰 李红艳 +3 位作者 史文韬 张峰 崔佳丽 毛立波 《节水灌溉》 北大核心 2024年第5期38-45,共8页
为探究灌溉供水管网中存在的漏损过高以及局部压力过大的问题,提出了一种基于FCM-GA的供水管网减压阀布设优化方法,该方法借助MATLAB、EPANET、MATLAB-EPANET-Toolkit以及PlatEMO平台等工具,对西班牙的BIN管网进行分区布置减压阀并优化... 为探究灌溉供水管网中存在的漏损过高以及局部压力过大的问题,提出了一种基于FCM-GA的供水管网减压阀布设优化方法,该方法借助MATLAB、EPANET、MATLAB-EPANET-Toolkit以及PlatEMO平台等工具,对西班牙的BIN管网进行分区布置减压阀并优化阀后压力,以不同分区方案的成本与降漏效果为控制指标,筛选出最优方案。结果显示:最优方案(分5个区)将整个管网的漏损率降低至7.45%,相较初始管网降低了20.04%,降低的漏损费用可达114€/d,在减压阀服务年限内可收回成本并达到盈利,并实现对整个管网系统的压力管理,提高了管网的稳定性和可靠性,有利于减少管网事故发生。因此,基于FCM-GA的灌溉供水管网减压阀布设优化是一种安全、低成本和高效益的降漏与控压方法,在有效降低灌溉用水费用的同时,可更好地实现节水灌溉。 展开更多
关键词 灌溉供水管网 FCM-ga算法 供水管网分区 漏损控制 减压阀布设优化 压力管理
在线阅读 下载PDF
基于GA-GRNN的AWJ强化3D打印AlSi10Mg表面性能实验研究 被引量:1
19
作者 张苗苗 侯荣国 +3 位作者 吕哲 王龙庆 石广行 王中庆 《现代制造工程》 CSCD 北大核心 2024年第7期35-41,共7页
为提高磨料水射流(Abrasive Water Jet,AWJ)强化工艺对3D打印AlSi10Mg表面性能的强化效果预测的准确性及高效性,首先开展磨料水射流强化AlSi10Mg表面强化实验;然后分别以表面硬度和表面残余应力作为目标,基于遗传算法-广义回归神经网络(... 为提高磨料水射流(Abrasive Water Jet,AWJ)强化工艺对3D打印AlSi10Mg表面性能的强化效果预测的准确性及高效性,首先开展磨料水射流强化AlSi10Mg表面强化实验;然后分别以表面硬度和表面残余应力作为目标,基于遗传算法-广义回归神经网络(Genetic Algorithm-Generalized Ragression Neural Network,GA-GRNN)对实验数据样本进行训练,建立3D打印AlSi10Mg表面性能预测模型;最后,利用遗传算法对建立的神经网络预测模型中的AWJ强化主要参数进行优化。研究结果表明,经过磨料水射流强化后的AlSi10Mg表面硬度与表面残余应力均得到有效提高;建立的GA-GRNN预测模型与校验值误差在2.3%以内,具有较高的准确性;经遗传算法优化后,得到表面硬度最佳参数组合:射流压力为33 MPa,磨料粒径为0.15 mm,靶距为12.4 mm,此时表面硬度为159.25HV;表面残余应力最佳参数组合:射流压力为40 MPa,磨料粒径为0.13 mm,靶距为15 mm,此时表面残余应力为-137.4 MPa。为后续磨料水射流强化零件表面的参数选择提供数据支撑。 展开更多
关键词 磨料水射流 3D打印的AlSi10Mg 表面强化 ga-GRNN神经网络 遗传算法
在线阅读 下载PDF
基于GA/PSO BP神经网络的石家庄VOCs环境浓度预测模型研究 被引量:6
20
作者 王欣 郭婧涵 +5 位作者 耿雅娴 王树桥 葛宇轩 袁京周 张丁超 韩梦非 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1560-1568,共9页
为了提升挥发性有机物(Volatile Organic Components,VOCs)的预测精度,在反向传播(Back Propagation,BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms,GA)优化BP神经网络(GA BP)和粒子群算法(Particle Swarm Optimiz... 为了提升挥发性有机物(Volatile Organic Components,VOCs)的预测精度,在反向传播(Back Propagation,BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms,GA)优化BP神经网络(GA BP)和粒子群算法(Particle Swarm Optimization,PSO)优化BP神经网络(PSO BP)对VOCs质量浓度进行预测。首先,对污染物及气象因子进行筛选。采用相关性分析法及逐步回归法进行分析筛选,并筛选出合适的输入变量。其次,建立BP神经网络结构。利用BP、GA BP、PSO BP神经网络,以石家庄市2022年夏季污染数据为样本对VOCs质量浓度进行预测。结果显示,经相关性分析及逐步回归法筛选,将PM_(2.5)质量浓度、O_(3)质量浓度、NO_(2)质量浓度、温度、相对湿度作为输入变量。经预测结果对比,PSO BP神经网络模型的预测精度较高,烷烃、烯烃、芳香烃和含氧烃实测值与预测值之间的拟合程度(R^(2))分别为0.80、0.55、0.78、0.67。研究结果可为日后VOCs污染预报预警提供理论参考。 展开更多
关键词 环境工程学 挥发性有机物(VOCs) 神经网络 智能优化算法 遗传算法 粒子群算法
在线阅读 下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部