Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for...Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.展开更多
Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.Firs...Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.展开更多
For decreasing the multiple access interference of weaker signal acquisition in direct sequence spread spectrum(DSSS) systems,a new single decision algorithm is presented.The maximum value of correlation results is ...For decreasing the multiple access interference of weaker signal acquisition in direct sequence spread spectrum(DSSS) systems,a new single decision algorithm is presented.The maximum value of correlation results is conventionally detected.However,there may be not only one strong peak among correlation results when the cross-correlation noise is strong enough to affect the correlation results.The proposed algorithm decreases the false alarm probability through the decision of the ratio of the maximum value and the second maximum value of the correlation results.Theoretical analysis and simulation results indicate that the proposed algorithm effectively suppresses the acquisition problem of multiple access interference in DSSS system.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
基金Project(2009BAG15B03) supported by the National Science and Technology Ministry of ChinaProjects(51178100, 51078080) supported by the National Natural Science Foundation of China+1 种基金Project(BK2011141) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(12KB02) supported by the Open Fund of the Key Laboratory for Safety Control of Bridge Engineering(Changsha University of Science and Technology), Ministry of Education, China
文摘Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.
基金Project(51078080)supported by the National Natural Science Foundation of ChinaProject(20130969010)supported by Aeronautical Science Foundation of China+1 种基金Project(2011Y03-6)supported by Traffic Transportation Technology Project of Jiangsu Province,ChinaProject(BK2012562)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.
基金supported by the National High Technology ResearchDevelopment Program of China (863 Program) (2008AA0248)
文摘For decreasing the multiple access interference of weaker signal acquisition in direct sequence spread spectrum(DSSS) systems,a new single decision algorithm is presented.The maximum value of correlation results is conventionally detected.However,there may be not only one strong peak among correlation results when the cross-correlation noise is strong enough to affect the correlation results.The proposed algorithm decreases the false alarm probability through the decision of the ratio of the maximum value and the second maximum value of the correlation results.Theoretical analysis and simulation results indicate that the proposed algorithm effectively suppresses the acquisition problem of multiple access interference in DSSS system.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.