期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode 被引量:15
1
作者 Jie Wang Qun Zong +1 位作者 Bailing Tian Helong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期288-295,共8页
The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings ... The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy. 展开更多
关键词 flexible air-breathing hypersonic vehicle nonlinear robust controller high order sliding mode control output tracking control
在线阅读 下载PDF
Reference tracking control for flexible air-breathing hypersonic vehicle with actuator delay and uncertainty 被引量:3
2
作者 Hongyi Li Yiming Cheng Yulin Si Huijun Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期141-145,共5页
This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower a... This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance. 展开更多
关键词 actuator delay flexible air-breathing hypersonic flight vehicle(FAHFV) non-fragile control output tracking control.
在线阅读 下载PDF
HOSVD-based LPV modeling and mixed robust H_2/H_∞ control design for air-breathing hypersonic vehicle 被引量:5
3
作者 Wei Jiang Hongli Wang +1 位作者 Jinghui Lu Zheng Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期183-191,共9页
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H... This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 high order singular value decomposition(HOSVD) linear parameter varying(LPV) tensor product model transformation linear matrix inequality(LMI) air-breathing hypersonic vehicle
在线阅读 下载PDF
Robust adaptive control of hypersonic vehicle considering inlet unstart 被引量:6
4
作者 WANG Fan FAN Pengfei +2 位作者 FAN Yonghua XU Bin YAN Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期188-196,共9页
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech... In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper. 展开更多
关键词 air-breathing hypersonic vehicle(AHV) inlet unstart model reference adaptive control augmentation(MRAC) radial basis function(RBF)neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部