Using natural gas(NG)as the primary fuel helps alleviate the fossil fuel crisis while reducing engine soot and nitrogen oxide(NO_(X))emissions.In this paper,the influences of a novel split injection concept on an NG h...Using natural gas(NG)as the primary fuel helps alleviate the fossil fuel crisis while reducing engine soot and nitrogen oxide(NO_(X))emissions.In this paper,the influences of a novel split injection concept on an NG high pressure direct injection(HPDI)engine are examined.Four typical split injection strategies,namely split pre-injection of pilot diesel(PD)and NG,split post-injection of PD and NG,split pre-injection of NG,and split post-injection of PD,were developed to investigate the influences on combustion and emissions.Results revealed that split pre injection of NG enhanced the atomization of PD,whereas the split post-injection of NG lowered the temperature in the core region of the PD spray,resulting in the deterioration of combustion.The effect of the split injection strategy on indicated thermal efficiency exceeded 7.5%.Split pre-injection was favorable to enhancing thermal efficiency,whereas split post-injection was not.Ignition delay,combustion duration,and premixed combustion time proportion were affected by injection strategies by 3.8%,50%,and 19.7%,respectively.Split pre-injection increased CH_(4) emission in the exhaust.Split post-injection,especially split post-injection of PD and NG,reduced the unburned CH_(4) emission by approximately 30%.When the split post-injection ratio was less than 30%,the trade-off between NO_(X) and soot was interrupted.The distribution range of hydroxyl radicals was expanded by pre-injection,and NO_(X) was generated in the region where the NG jet hit the wall.This paper provides valuable insights into the optimization of HPDI injection parameters.展开更多
Propofol(2,6-di-isopropylphenol) is a short-acting,intravenous sedative drug.^([1,2]) The pharmacologic mechanism of propofol is related to its agonistic effects on the gamma-amino butyric acid receptor.^([1-3]) Propo...Propofol(2,6-di-isopropylphenol) is a short-acting,intravenous sedative drug.^([1,2]) The pharmacologic mechanism of propofol is related to its agonistic effects on the gamma-amino butyric acid receptor.^([1-3]) Propofol injection pain(PIP) is well-known in the operating room and is commonly countered by the prophylactic administration of lidocaine.In anesthesia,PIP is encountered in 28%–90% of patients.^([4,5]) However,PIPprophylaxis does not seem to be efficacious in every population.^([6,7]) Whether procedural sedation and analgesia(PSA) in the emergency department(ED) warrants lidocaine administration is unclear.展开更多
Subcutaneous administration of low-molecularweight heparin(LMWH)has been widely accepted as an effective anticoagulation therapy and is frequently used for patients to prevent thromboembolic events.While the usually s...Subcutaneous administration of low-molecularweight heparin(LMWH)has been widely accepted as an effective anticoagulation therapy and is frequently used for patients to prevent thromboembolic events.While the usually seen bruising around the injection site during subcutaneous LMWH treatment,the abdominal wall(AW)hematoma(AWH)was scarcely observed and reported.A previous study demonstrated the usual etiological risk of AWH involved anticoagulation therapy,chronic kidney disease,and trauma.^([1])Most of these cases had a favorable prognosis after conservative treatment.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
The combination therapy of magnetic hyperthermia and thermosensitive liposomes(TSL)is an emerging and effective cancer treatment method.The heat generation of magnetic nanoparticles(MNPs)due to an external alternating...The combination therapy of magnetic hyperthermia and thermosensitive liposomes(TSL)is an emerging and effective cancer treatment method.The heat generation of magnetic nanoparticles(MNPs)due to an external alternating magnetic field can not only directly damage tumor cells,but also serves as a triggering factor for the release of doxorubicin from TSL.The aim of this study is to investigate the effects in the degree of tumor cell damage of two proposed injection strategies that consider intravenous administration.Since both MNPs and TSL enter the tumor region intravenously,this study establishes a biological geometric model based on an experiment-based vascular distribution.Furthermore,this study derives the flow velocity of interstitial fluid after coupling the pressure distribution inside blood vessels and the pressure distribution of interstitial fluid,which then provides the convective velocity for the calculation of subsequent nanoparticle concentration.Different injection strategies for the proposed approach are evaluated by drug delivery result,temperature distribution,and tumor cell damage.Simulation results demonstrate that the proposed delayed injection strategy after optimization can not only result in a wider distribution for MNPs and TSL due to the sufficient diffusion time,but also improves the distribution of the temperature and drug concentration fields for the overall efficacy of combination therapy.展开更多
Based on the EAST equilibrium,the effects of boron(B)and neon(Ne)injected at different locations on the target heat load,and the distributions of B and Ne particles were investigated by transport code SOLPS-ITER.It wa...Based on the EAST equilibrium,the effects of boron(B)and neon(Ne)injected at different locations on the target heat load,and the distributions of B and Ne particles were investigated by transport code SOLPS-ITER.It was found that the B injection was more sensitive to the injection location for heat flux control than impurity Ne.The high electron and ion densities near the inner target in the discharge with impurity B injected from over X-point(R_(1))led to plasma detachment only at the inner target,and the localized B ions in the cases with injection from outer target location(R_(2))and upstream location(R_(3))led to far-SOL detachment at the outer target,but not at the inner target.In contrast,for Ne,the spatial distributions of Ne ions and electrons were found to be similar in all the cases at the three injection locations,and the detached plasma was achieved at the inner target and the electron temperature was reduced at the outer target.For locations R_(2) and R_(3),impurity B showed a more pronounced effect on the heat flux at the far-SOL of the outer target.Further analysis indicated that Ne atoms came mainly from the recycling sources,whereas B atoms came mainly from injection,and that their distinct atomic distributions resulted from the difference in the ionization threshold and ionization mean free path.In addition,the radiation proportion of B in the divertor region was larger than that of Ne when the total radiation power was similar,which suggests that B has less influence on the core region.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address t...Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil-detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube(CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil-detritus mixtures, indicating the good combustion activity of the shale oil.Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature(from 63 to 143℃) and oxygen concentration in the injected gas(from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and...Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.展开更多
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si...The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.展开更多
Carbonated water injection(CWI)is a promising enhanced oil recovery(EOR)technology that has received much attention in co-optimizing CO_(2) storage and oil recovery.This study provides a comprehensive review of the fl...Carbonated water injection(CWI)is a promising enhanced oil recovery(EOR)technology that has received much attention in co-optimizing CO_(2) storage and oil recovery.This study provides a comprehensive review of the fluid system properties and the underlying changes in rock-fluid interactions that drive the CWI-EOR mechanisms.Previous research has indicated that CWI can enhance oil recovery by shifting reservoir wettability towards a more water-wet state and reducing interfacial tension(IFT).However,this study reveals that there is still room for discussion in this area.Notably,the potential of CWI to alter reservoir permeability has not yet been explored.The varying operational conditions of the CWI process,namely temperature,pressure,injection rate,salinity,and ionic composition,lead to different levels of oil recovery factors.Herein,we aim to meticulously analyze their impact on oil recovery performance and outline the optimal operational conditions.Pressure,for instance,positively influences oil recovery rate and CWI efficiency.On one hand,higher operating pressures enhance the effectiveness of CW due to increased CO_(2)solubility.On the other hand,gas exsolution events in depleted reservoirs provide additional energy for oil movement along gas growth pathways.However,CWI at high carbonation levels does not offer significant benefits over lower carbonation levels.Additionally,lower temperatures and injection rates correlate with higher recovery rates.Further optimization of solution chemistry is necessary to determine the maximum recovery rates under optimal conditions.Moreover,this review comprehensively covers laboratory experiments,numerical simulations,and field applications involving the CWI process.However,challenges such as pipeline corrosion,potential reservoir damage,and produced water treatment impact the further application of CWI in EOR technologies.These issues can affect the expected oil recovery rates,thereby reducing the economic returns of EOR projects.Finally,this review introduces current research trends and future development prospects based on recently published studies in the field of CWI.The conclusions of this study aid readers in better understanding the latest advancements in CWI technology and the strengths and limitations of the techniques used,providing directions for further development and application of CWI.展开更多
Spray atomization of liquid fuel plays an important role in droplet evaporation,combustible mixture formation and subsequent combustion process.Well-atomized liquid spray contributes to high fuel efficiency and low po...Spray atomization of liquid fuel plays an important role in droplet evaporation,combustible mixture formation and subsequent combustion process.Well-atomized liquid spray contributes to high fuel efficiency and low pollutant emissions.Gasoline direct injection(GDI)has been recognized as one of the most effective ways to improve fuel atomization.As a special direct injection method,the air-assisted direct injection utilizes high-speed flow of high-pressure air at the injector exit to assist liquid fuel injection and promote spray atomization at a low injection pressure.This injection method has excellent application potential and advantages for high performance and lightweight engines.In this study,the hollow cone spray emerging from an air-assisted injector was studied in a constant volume chamber with the ambient pressures ranging from 5 kPa to 300 kPa.External macro characteristics of spray were obtained using high speed backlit imaging.Phase Doppler particle analyzer(PDPA)was utilized to study the microcosmic spray characteristics.The results show that under the flash boiling condition,the spray will generate a strong flash boiling point which causes the cone shape spray to expand both inwards and outwards.The axisymmetric inward expansion would converge together and form a lathy aggregation area below the nozzle and the axisymmetric outward expansion greatly increases the spray width.The sauter mean diameter(SMD)of flash boiling condition can be reduced to 5μm compared to the level close to 10μm in the non-flash boiling condition.展开更多
Plugging agent treatment and acid stimulation have completely different mechanisms for improving injection profiles. In this paper, a hybrid procedure is introduced to reduce the damage of the plugging agent to low a...Plugging agent treatment and acid stimulation have completely different mechanisms for improving injection profiles. In this paper, a hybrid procedure is introduced to reduce the damage of the plugging agent to low and medium permeability zones and the penetration radius of acid into high permeability zones. The procedure is: First inject plugging agent to block high permeability zones, and then inject acid to remove plugging agent damage from the low and medium permeability zones and stimulate them. To perform this procedure successfully, three kinds of plugging agents, namely strong strength plugging agent for the wells with fractures or high permeability streaks, weak gel for those with thick layer in which serious heterogeneity exists, temporary plugging agent for those in which the absorption ability of high permeability zones needs maintaining, were screened out for use in different reservoirs. Several acid systems were evaluated to be compatible with the three kinds of plugging agents. The objectives of this paper are:(1)To show the screen results about the compatible plugging agent and acid; 2 To show how to optimize the operation process;(3)To tell some experience gained ( ) from the oilfield applications of this technique. From Jan. 2001 to Dec. 2002, 46 operations using this procedure were carried out in Weicheng and Mazhai Oilfields of SINOPEC. Results show that the average benefit/cost ratio is over 3.5. Experience acquired from these applications was summarized in the paper.展开更多
Objective To observe the effect of Danhong injection(DI)in patients with acute ST-segment elevation myocardial infarction(STEMI)at a high risk of no-reflow(NR)during primary percutaneous coronary intervention(PCI).Met...Objective To observe the effect of Danhong injection(DI)in patients with acute ST-segment elevation myocardial infarction(STEMI)at a high risk of no-reflow(NR)during primary percutaneous coronary intervention(PCI).Methods Patients were placed in a DI group and control group.The DI group was given DI and the control group was given physiologic saline.The administration lasted 4 to 6 days in both groups after PCI.Cardiac magnetic resonance(CMR)was carried out during the perioperative period(7±2 days).The primary endpoint of the study was myocardial infarct size(IS)imaged on delayed-enhancement CMR.The secondary endpoint was major adverse cardiac events observed 6 months after PCI.Results In total,160 high-risk NR patients were enrolled,and 110 patients completed the CMR examination.According to postoperative CMR,the Myocardial Salvage Index and left ventricular ejection fraction were higher in the DI group(0.57±0.13 vs.0.48±0.17,P<0.01;49.3%±6.9%vs.46.2%±7.7%,P=0.03,respectively),whereas the IS was lower(19.7%±5.6%vs.22.2%±6.5%,P=0.04),compared with that in the control group.These differences were observed to be significant.After 6 months,the prevalence of major adverse cardiac events in the DI group decreased compared with that in the control group,but the differences were not observed to be significant(P>0.05).Conclusion The application of DI can reduce the myocardial infarct size in STEMI patients at a high risk of NR during primary PCI.展开更多
Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non...Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2-4 MW beam power with 50-80 keV beam energy in 10-100 s pulse length. Each elements of the NBI system are presented in this contribution.展开更多
Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture ha...Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture have been optimized. A longitudinal injection scheme was investigated on the HALS using a doublefrequency radio frequency system. To evaluate the injection performance, various errors were considered. A series of tracking simulations were conducted, and the injection efficiency was obtained under different error levels.展开更多
Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coa...Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coalfields, which exacerbates the negative subsequences resulted from surface settlement. Therefore, effective approaches to control the ground subsidence are in urgent need for the Chinese coal mining industry. This paper presents a newly developed subsidence control technology: isolated overburden grout injection, including the theory, technique and applications. Relevant procedures such as injection system design, grouting material selection, borehole layout, grout take estimation and injection process design are proposed. The applicability of this technology has been demonstrated through physical modelling, field measurements, and case studies. Since 2009, the technology has been successfully applied to 14 longwall areas in 9 Chinese coal mines. The ultimate surface subsidence factors vary from 0.10 to 0.15. This method has a great potential to be popularized and performed where longwall mining are implemented under villages and ground infrastructures.展开更多
Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacem...Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding展开更多
The heating and current drive using NBI (neutral beam injection) with a variable injection angle (the angle between the axis of the NBI system with the center axis of the injection window) on EAST is simulated by ...The heating and current drive using NBI (neutral beam injection) with a variable injection angle (the angle between the axis of the NBI system with the center axis of the injection window) on EAST is simulated by using NBEAMS code. The influence of the injection angle on the neutral beam current drive, heating efficiency and beam shinethrough power is discussed to explore the optimum injection angle for the EAST NBI system. According to the simulation, an injection angle of 19.5° is the optimum for EAST with its typical experimental parameters. With this injection angle, the increase in both the beam energy and power can improve the current drive and heating efficiency. The problem that the beam shinethrough power increases with the higher injection energy and power could be controlled through an increase of the plasma density.展开更多
基金Supported by the National Natural Science Foundation of China(No.51909154)Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency(No.20DZ2252300).
文摘Using natural gas(NG)as the primary fuel helps alleviate the fossil fuel crisis while reducing engine soot and nitrogen oxide(NO_(X))emissions.In this paper,the influences of a novel split injection concept on an NG high pressure direct injection(HPDI)engine are examined.Four typical split injection strategies,namely split pre-injection of pilot diesel(PD)and NG,split post-injection of PD and NG,split pre-injection of NG,and split post-injection of PD,were developed to investigate the influences on combustion and emissions.Results revealed that split pre injection of NG enhanced the atomization of PD,whereas the split post-injection of NG lowered the temperature in the core region of the PD spray,resulting in the deterioration of combustion.The effect of the split injection strategy on indicated thermal efficiency exceeded 7.5%.Split pre-injection was favorable to enhancing thermal efficiency,whereas split post-injection was not.Ignition delay,combustion duration,and premixed combustion time proportion were affected by injection strategies by 3.8%,50%,and 19.7%,respectively.Split pre-injection increased CH_(4) emission in the exhaust.Split post-injection,especially split post-injection of PD and NG,reduced the unburned CH_(4) emission by approximately 30%.When the split post-injection ratio was less than 30%,the trade-off between NO_(X) and soot was interrupted.The distribution range of hydroxyl radicals was expanded by pre-injection,and NO_(X) was generated in the region where the NG jet hit the wall.This paper provides valuable insights into the optimization of HPDI injection parameters.
文摘Propofol(2,6-di-isopropylphenol) is a short-acting,intravenous sedative drug.^([1,2]) The pharmacologic mechanism of propofol is related to its agonistic effects on the gamma-amino butyric acid receptor.^([1-3]) Propofol injection pain(PIP) is well-known in the operating room and is commonly countered by the prophylactic administration of lidocaine.In anesthesia,PIP is encountered in 28%–90% of patients.^([4,5]) However,PIPprophylaxis does not seem to be efficacious in every population.^([6,7]) Whether procedural sedation and analgesia(PSA) in the emergency department(ED) warrants lidocaine administration is unclear.
文摘Subcutaneous administration of low-molecularweight heparin(LMWH)has been widely accepted as an effective anticoagulation therapy and is frequently used for patients to prevent thromboembolic events.While the usually seen bruising around the injection site during subcutaneous LMWH treatment,the abdominal wall(AW)hematoma(AWH)was scarcely observed and reported.A previous study demonstrated the usual etiological risk of AWH involved anticoagulation therapy,chronic kidney disease,and trauma.^([1])Most of these cases had a favorable prognosis after conservative treatment.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.62471144 and 62071124)in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(BR)(CNPq)(Grant No.315546/2021-2)。
文摘The combination therapy of magnetic hyperthermia and thermosensitive liposomes(TSL)is an emerging and effective cancer treatment method.The heat generation of magnetic nanoparticles(MNPs)due to an external alternating magnetic field can not only directly damage tumor cells,but also serves as a triggering factor for the release of doxorubicin from TSL.The aim of this study is to investigate the effects in the degree of tumor cell damage of two proposed injection strategies that consider intravenous administration.Since both MNPs and TSL enter the tumor region intravenously,this study establishes a biological geometric model based on an experiment-based vascular distribution.Furthermore,this study derives the flow velocity of interstitial fluid after coupling the pressure distribution inside blood vessels and the pressure distribution of interstitial fluid,which then provides the convective velocity for the calculation of subsequent nanoparticle concentration.Different injection strategies for the proposed approach are evaluated by drug delivery result,temperature distribution,and tumor cell damage.Simulation results demonstrate that the proposed delayed injection strategy after optimization can not only result in a wider distribution for MNPs and TSL due to the sufficient diffusion time,but also improves the distribution of the temperature and drug concentration fields for the overall efficacy of combination therapy.
基金Project supported by the National Key R&D Program of China(Grant No.2019YFE03030004)the National Natural Science Foundation of China(Grant No.12275040)+1 种基金the Users with Excellence Program of Hefei Science Center CAS(Grant No.2020HSC-UE010)This research is also sponsored in part by the U.S.Department of Energy under contract DEAC02-09CH11466.
文摘Based on the EAST equilibrium,the effects of boron(B)and neon(Ne)injected at different locations on the target heat load,and the distributions of B and Ne particles were investigated by transport code SOLPS-ITER.It was found that the B injection was more sensitive to the injection location for heat flux control than impurity Ne.The high electron and ion densities near the inner target in the discharge with impurity B injected from over X-point(R_(1))led to plasma detachment only at the inner target,and the localized B ions in the cases with injection from outer target location(R_(2))and upstream location(R_(3))led to far-SOL detachment at the outer target,but not at the inner target.In contrast,for Ne,the spatial distributions of Ne ions and electrons were found to be similar in all the cases at the three injection locations,and the detached plasma was achieved at the inner target and the electron temperature was reduced at the outer target.For locations R_(2) and R_(3),impurity B showed a more pronounced effect on the heat flux at the far-SOL of the outer target.Further analysis indicated that Ne atoms came mainly from the recycling sources,whereas B atoms came mainly from injection,and that their distinct atomic distributions resulted from the difference in the ionization threshold and ionization mean free path.In addition,the radiation proportion of B in the divertor region was larger than that of Ne when the total radiation power was similar,which suggests that B has less influence on the core region.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
基金supported by National Natural Science Foundation of China (No. 52204049)Natural Science Foundation of Sichuan Province (No. 2024NSFSC0960)Ministry of Science and Higher Education of the Russian Federation under Agreement No. 075-15-2022-299 within the Framework of the Development Program for a World-Class Research Center “Efficient development of the global liquid hydrocarbon reserves”。
文摘Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil-detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube(CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil-detritus mixtures, indicating the good combustion activity of the shale oil.Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature(from 63 to 143℃) and oxygen concentration in the injected gas(from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金Supported by the National Natural Science Foundation of China(52192622,52304003).
文摘Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.
文摘The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4104200)Liaoning Foundation Research Projects for Application(Grant No.2023JH2/101300005)National Natural Science Foundation of China(Grant No.51976024,52076030)。
文摘Carbonated water injection(CWI)is a promising enhanced oil recovery(EOR)technology that has received much attention in co-optimizing CO_(2) storage and oil recovery.This study provides a comprehensive review of the fluid system properties and the underlying changes in rock-fluid interactions that drive the CWI-EOR mechanisms.Previous research has indicated that CWI can enhance oil recovery by shifting reservoir wettability towards a more water-wet state and reducing interfacial tension(IFT).However,this study reveals that there is still room for discussion in this area.Notably,the potential of CWI to alter reservoir permeability has not yet been explored.The varying operational conditions of the CWI process,namely temperature,pressure,injection rate,salinity,and ionic composition,lead to different levels of oil recovery factors.Herein,we aim to meticulously analyze their impact on oil recovery performance and outline the optimal operational conditions.Pressure,for instance,positively influences oil recovery rate and CWI efficiency.On one hand,higher operating pressures enhance the effectiveness of CW due to increased CO_(2)solubility.On the other hand,gas exsolution events in depleted reservoirs provide additional energy for oil movement along gas growth pathways.However,CWI at high carbonation levels does not offer significant benefits over lower carbonation levels.Additionally,lower temperatures and injection rates correlate with higher recovery rates.Further optimization of solution chemistry is necessary to determine the maximum recovery rates under optimal conditions.Moreover,this review comprehensively covers laboratory experiments,numerical simulations,and field applications involving the CWI process.However,challenges such as pipeline corrosion,potential reservoir damage,and produced water treatment impact the further application of CWI in EOR technologies.These issues can affect the expected oil recovery rates,thereby reducing the economic returns of EOR projects.Finally,this review introduces current research trends and future development prospects based on recently published studies in the field of CWI.The conclusions of this study aid readers in better understanding the latest advancements in CWI technology and the strengths and limitations of the techniques used,providing directions for further development and application of CWI.
基金Supported by Beijing Institute of Technology Research Fund Program for Young Scholars(2019CX04-031)Foundation Research Funds of Ministry of Industry and Information Technology(JCKY2019602D018)。
文摘Spray atomization of liquid fuel plays an important role in droplet evaporation,combustible mixture formation and subsequent combustion process.Well-atomized liquid spray contributes to high fuel efficiency and low pollutant emissions.Gasoline direct injection(GDI)has been recognized as one of the most effective ways to improve fuel atomization.As a special direct injection method,the air-assisted direct injection utilizes high-speed flow of high-pressure air at the injector exit to assist liquid fuel injection and promote spray atomization at a low injection pressure.This injection method has excellent application potential and advantages for high performance and lightweight engines.In this study,the hollow cone spray emerging from an air-assisted injector was studied in a constant volume chamber with the ambient pressures ranging from 5 kPa to 300 kPa.External macro characteristics of spray were obtained using high speed backlit imaging.Phase Doppler particle analyzer(PDPA)was utilized to study the microcosmic spray characteristics.The results show that under the flash boiling condition,the spray will generate a strong flash boiling point which causes the cone shape spray to expand both inwards and outwards.The axisymmetric inward expansion would converge together and form a lathy aggregation area below the nozzle and the axisymmetric outward expansion greatly increases the spray width.The sauter mean diameter(SMD)of flash boiling condition can be reduced to 5μm compared to the level close to 10μm in the non-flash boiling condition.
文摘Plugging agent treatment and acid stimulation have completely different mechanisms for improving injection profiles. In this paper, a hybrid procedure is introduced to reduce the damage of the plugging agent to low and medium permeability zones and the penetration radius of acid into high permeability zones. The procedure is: First inject plugging agent to block high permeability zones, and then inject acid to remove plugging agent damage from the low and medium permeability zones and stimulate them. To perform this procedure successfully, three kinds of plugging agents, namely strong strength plugging agent for the wells with fractures or high permeability streaks, weak gel for those with thick layer in which serious heterogeneity exists, temporary plugging agent for those in which the absorption ability of high permeability zones needs maintaining, were screened out for use in different reservoirs. Several acid systems were evaluated to be compatible with the three kinds of plugging agents. The objectives of this paper are:(1)To show the screen results about the compatible plugging agent and acid; 2 To show how to optimize the operation process;(3)To tell some experience gained ( ) from the oilfield applications of this technique. From Jan. 2001 to Dec. 2002, 46 operations using this procedure were carried out in Weicheng and Mazhai Oilfields of SINOPEC. Results show that the average benefit/cost ratio is over 3.5. Experience acquired from these applications was summarized in the paper.
基金supported by grant from the Capital health research and development of special project (2016-15011)
文摘Objective To observe the effect of Danhong injection(DI)in patients with acute ST-segment elevation myocardial infarction(STEMI)at a high risk of no-reflow(NR)during primary percutaneous coronary intervention(PCI).Methods Patients were placed in a DI group and control group.The DI group was given DI and the control group was given physiologic saline.The administration lasted 4 to 6 days in both groups after PCI.Cardiac magnetic resonance(CMR)was carried out during the perioperative period(7±2 days).The primary endpoint of the study was myocardial infarct size(IS)imaged on delayed-enhancement CMR.The secondary endpoint was major adverse cardiac events observed 6 months after PCI.Results In total,160 high-risk NR patients were enrolled,and 110 patients completed the CMR examination.According to postoperative CMR,the Myocardial Salvage Index and left ventricular ejection fraction were higher in the DI group(0.57±0.13 vs.0.48±0.17,P<0.01;49.3%±6.9%vs.46.2%±7.7%,P=0.03,respectively),whereas the IS was lower(19.7%±5.6%vs.22.2%±6.5%,P=0.04),compared with that in the control group.These differences were observed to be significant.After 6 months,the prevalence of major adverse cardiac events in the DI group decreased compared with that in the control group,but the differences were not observed to be significant(P>0.05).Conclusion The application of DI can reduce the myocardial infarct size in STEMI patients at a high risk of NR during primary PCI.
基金supported by National Natural Science Foundation of China (No. 11075188)the Chinese Academy of Sciences Knowledge Innovation Project: the study of neutral beam steady-state operation of the key technical and physical problems
文摘Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2-4 MW beam power with 50-80 keV beam energy in 10-100 s pulse length. Each elements of the NBI system are presented in this contribution.
基金supported by the National Key R&D Program of China(No.2016YFA0402002)
文摘Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture have been optimized. A longitudinal injection scheme was investigated on the HALS using a doublefrequency radio frequency system. To evaluate the injection performance, various errors were considered. A series of tracking simulations were conducted, and the injection efficiency was obtained under different error levels.
基金financial support provided by the National Natural Science Foundation of China(51604258)is greatly appreciated
文摘Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coalfields, which exacerbates the negative subsequences resulted from surface settlement. Therefore, effective approaches to control the ground subsidence are in urgent need for the Chinese coal mining industry. This paper presents a newly developed subsidence control technology: isolated overburden grout injection, including the theory, technique and applications. Relevant procedures such as injection system design, grouting material selection, borehole layout, grout take estimation and injection process design are proposed. The applicability of this technology has been demonstrated through physical modelling, field measurements, and case studies. Since 2009, the technology has been successfully applied to 14 longwall areas in 9 Chinese coal mines. The ultimate surface subsidence factors vary from 0.10 to 0.15. This method has a great potential to be popularized and performed where longwall mining are implemented under villages and ground infrastructures.
基金supported by Open Fund (CRI2012RCPS0152CN) of State Key Laboratory of Offshore Oil Exploitationthe National Science and Technology Major Project (2011ZX05024-004-01)
文摘Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding
基金supported by Knowledge Innovation Program of the Chinese Academy of Sciences (No.075FCQ012C)National Natural Science Foundation of China (No.10975160)
文摘The heating and current drive using NBI (neutral beam injection) with a variable injection angle (the angle between the axis of the NBI system with the center axis of the injection window) on EAST is simulated by using NBEAMS code. The influence of the injection angle on the neutral beam current drive, heating efficiency and beam shinethrough power is discussed to explore the optimum injection angle for the EAST NBI system. According to the simulation, an injection angle of 19.5° is the optimum for EAST with its typical experimental parameters. With this injection angle, the increase in both the beam energy and power can improve the current drive and heating efficiency. The problem that the beam shinethrough power increases with the higher injection energy and power could be controlled through an increase of the plasma density.