High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address thes...High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address these above issues,solid-state Li–air batteries have been widely developed.However,many commonly-used solid electrolytes generally face huge interface impedance inLi–air cells and also showpoor stability towards ambient air/Li electrodes.Herein,we fabricate a differentiating surface-regulated ceramic-based composite electrolyte(DSCCE)by constructing disparately LiI-containing polymethyl methacrylate(PMMA)coating and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)layer on both sides of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_(4))_(3)(LAGP).The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system.Additionally,the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover,Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniformand compact composite framework.As a result,the DSCCE-based Li–air batteries possess high capacity/low voltage polarization(11,836mAh g^(-1)/1.45Vunder 500mAg^(-1)),good rate performance(capacity ratio under 1000mAg^(-1)/250mAg^(-1) is 68.2%)and longterm stable cell operation(~300 cycles at 750 mA g^(-1) with 750 mAh g^(-1))in ambient air.展开更多
Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem ...Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper.展开更多
目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机...目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机分为两组,应用常规线圈(脊柱相控阵线圈,头颈联合线圈)、常规线圈联合AIR魔毯线圈对两组患者分别进行扫描。扫描序列包括胸椎矢状位T_(2)WI,T_(1)WI,T_(2)FLEX,进一步测量、比较SNR,CNR及脂肪抑制效果,分析MRI多序列诊断胸腰椎结核的准确率、特异度和灵敏度。结果常规线圈联合AIR-魔毯线圈扫描组,胸椎矢状位图像的SNR、CNR及压脂效果优于常规线圈组。结论联合应用AIR-魔毯线圈的图像SNR、CNR得到提高,脂肪抑制效果稳定良好。展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ...Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.展开更多
The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this ...The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.展开更多
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr...When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.展开更多
The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system....The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system.Due to the openness and widely distribution of ATM system,the trust relationship of all parties in the system is pretty complex.At present,public key infrastructure(PKI)based identity authentication method is more and more difficult to meet the growing demand of ATM service.First,through the analysis of the organizational structure and operation mode of ATM system,this paper points out the existing identity authentication security threats in ATM system,and discusses the advantages of adopting blockchain technology in ATM system.Further,we briefly analyze some shortcomings of the current PKI-based authentication system in ATM.Particularly,to address the authentication problem,this paper proposes and presents a trusted ATM Security Authentication Model and authentication protocol based on blockchain.Finally,this paper makes a comprehensive analysis and simulation of the proposed security authentication scheme,and gets the expected effect.展开更多
Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address t...Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil-detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube(CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil-detritus mixtures, indicating the good combustion activity of the shale oil.Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature(from 63 to 143℃) and oxygen concentration in the injected gas(from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.展开更多
Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning imp...Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed.展开更多
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm...Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.展开更多
Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive ...Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive species,which can be regulated by the activation process.In this study,surface plasma-activated air(SAA)and a He+O_(2)plasma jet(Jet)were parallelly combined(the SAA+Jet combination)or sequentially combined(the SAA→Jet combination and the Jet→SAA combination)to prepare plasma-activated saline(PAS).The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone.The concentrations of H_(2)O_(2)and NO_(2)^(-)were higher in the PAS activated by the Jet→SAA combination,while ONOO^(-)concentrations were close in the three kinds of PAS and^(1)O_(2)concentrations were higher in the PAS activated by the SAA+Jet combination.The analysis of scavengers also demonstrated that H_(2)O_(2),^(1)O_(2),and ONOO^(-)in the PAS activated by the SAA+Jet combination,and^(1)O_(2)in the PAS activated by the Jet→SAA combination played critical roles in bactericidal effects.Further,the effective placement time of the three PAS varied,and the PAS activated by the Jet→SAA combination could also inactivate 2.6-log_(10)of MRSA cells after placement for more than 60 min.The regulation of reactive species in plasma-activated water via different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field.展开更多
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
Secondary electron yield(SEY)of air-exposed metals tends to be increased because of air-formed oxide,hydrocarbon,and other contaminants.This enhances the possibility of secondary electron multipacting in high-power mi...Secondary electron yield(SEY)of air-exposed metals tends to be increased because of air-formed oxide,hydrocarbon,and other contaminants.This enhances the possibility of secondary electron multipacting in high-power microwave systems,resulting in undesirable occurrence of discharge damage.Al_(2)O_(3) coatings have been utilized as passive and protective layers on device packages to provide good environmental stability.We employed atomic layer deposition(ALD)to produce a series of uniform Al_(2)O_(3) coatings with appropriate thickness on Ag-plated aluminum alloy.The secondary electron emission characteristics and their variations during air exposure were observed.The escape depth of secondary electron needs to exceed the coating thickness to some extent in order to demonstrate SEY of metallic substrates.Based on experimental and calculated results,the maximum SEY of Ag-plated aluminum alloy had been maintained at 2.45 over 90 days of exposure without obvious degradation by applying 1 nm Al_(2)O_(3) coatings.In comparison,the peak SEY of untreated Ag-plated aluminum alloy grew from an initial 2.33 to 2.53,exceeding that of the 1 nm Al_(2)O_(3) sample.The ultra-thin ALDAl_(2)O_(3) coating substantially enhanced the SEY stability of metal materials,with good implications for the environmental dependability of spacecraft microwave components.展开更多
Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catal...Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries.Herein,an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite(CoNiLDH@NPC)composed of wood-based N and P doped active carbon(NPC)and CoNi layer double hydroxides(CoNiLDH).In the light of its large specific surface area and unique defective structure,CoNiLDH@NPC with strong interfacecoupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality.Such carbon composites show half-wave potential of 0.85 V for ORR,overpotential of 320 mV with current density of 10 mA cm^(-2) for OER,and ultra-low gap of 0.70 V.Furthermore,highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process.Consequently,zinc-air batteries using CoNiLDH@NPC show high power density(aqueous:263 mW cm^(-2),quasi-solid-state:65.8 mW cm^(-2))and long-term stability(aqueous:500 h,quasi-solid-state:120 h).This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources.展开更多
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t...Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.展开更多
基金supported by the National Natural Science Foundation of China(22379074)Young Science and Technology Talent Program of Inner Mongolia Province(NJYT24001)+4 种基金Natural Sciences and Engineering Research Council of Canada(NSERC)GLABAT Solid-State Battery Inc.,China Automotive Battery Research Institute Co.Ltd,Canada Research Chair Program(CRC)Canada Foundation for Innovation(CFI)Ontario Research Fundsupported by the Chinese Scholarship Council.
文摘High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address these above issues,solid-state Li–air batteries have been widely developed.However,many commonly-used solid electrolytes generally face huge interface impedance inLi–air cells and also showpoor stability towards ambient air/Li electrodes.Herein,we fabricate a differentiating surface-regulated ceramic-based composite electrolyte(DSCCE)by constructing disparately LiI-containing polymethyl methacrylate(PMMA)coating and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)layer on both sides of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_(4))_(3)(LAGP).The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system.Additionally,the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover,Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniformand compact composite framework.As a result,the DSCCE-based Li–air batteries possess high capacity/low voltage polarization(11,836mAh g^(-1)/1.45Vunder 500mAg^(-1)),good rate performance(capacity ratio under 1000mAg^(-1)/250mAg^(-1) is 68.2%)and longterm stable cell operation(~300 cycles at 750 mA g^(-1) with 750 mAh g^(-1))in ambient air.
文摘Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper.
文摘目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机分为两组,应用常规线圈(脊柱相控阵线圈,头颈联合线圈)、常规线圈联合AIR魔毯线圈对两组患者分别进行扫描。扫描序列包括胸椎矢状位T_(2)WI,T_(1)WI,T_(2)FLEX,进一步测量、比较SNR,CNR及脂肪抑制效果,分析MRI多序列诊断胸腰椎结核的准确率、特异度和灵敏度。结果常规线圈联合AIR-魔毯线圈扫描组,胸椎矢状位图像的SNR、CNR及压脂效果优于常规线圈组。结论联合应用AIR-魔毯线圈的图像SNR、CNR得到提高,脂肪抑制效果稳定良好。
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金supported by the National Natural Science Foundation of China(No.42272321)Hubei Provincial Key Research Projects(Nos.2022BAA093 and 2022BAD163)+1 种基金Major Scientific and Technological Special Project of Jiangxi Province(No.2023ACG01004)WSGRI Engineering&Surveying Incorporation Limited(No.6120230256)。
文摘Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.
基金the National Natural Science Foun-dation of China(Grant No.11572031).
文摘The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
基金Project supported by the National Natural Science Foundation of China (Grant No.51977132)Key Special Science and Technology Project of Liaoning Province (Grant No.2020JH1/10100012)General Program of the Education Department of Liaoning Province (Grant No.LJKZ0126)。
文摘When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.
基金This work was supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418).
文摘The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system.Due to the openness and widely distribution of ATM system,the trust relationship of all parties in the system is pretty complex.At present,public key infrastructure(PKI)based identity authentication method is more and more difficult to meet the growing demand of ATM service.First,through the analysis of the organizational structure and operation mode of ATM system,this paper points out the existing identity authentication security threats in ATM system,and discusses the advantages of adopting blockchain technology in ATM system.Further,we briefly analyze some shortcomings of the current PKI-based authentication system in ATM.Particularly,to address the authentication problem,this paper proposes and presents a trusted ATM Security Authentication Model and authentication protocol based on blockchain.Finally,this paper makes a comprehensive analysis and simulation of the proposed security authentication scheme,and gets the expected effect.
基金supported by National Natural Science Foundation of China (No. 52204049)Natural Science Foundation of Sichuan Province (No. 2024NSFSC0960)Ministry of Science and Higher Education of the Russian Federation under Agreement No. 075-15-2022-299 within the Framework of the Development Program for a World-Class Research Center “Efficient development of the global liquid hydrocarbon reserves”。
文摘Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil-detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube(CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil-detritus mixtures, indicating the good combustion activity of the shale oil.Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature(from 63 to 143℃) and oxygen concentration in the injected gas(from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation.
基金supported by the Beijing Science Fund for Distinguished Young Scholars(No.JQ22009)National Natural Science Foundation of China(No.51977198)。
文摘Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed.
基金supported by the National Key R&D Program of China(2021YFB3301100)Beijing University of Chemical Technology Interdisciplinary Program(XK2023-07).
文摘Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.
基金supported by National Natural Science Foundation of China(No.51977174)。
文摘Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive species,which can be regulated by the activation process.In this study,surface plasma-activated air(SAA)and a He+O_(2)plasma jet(Jet)were parallelly combined(the SAA+Jet combination)or sequentially combined(the SAA→Jet combination and the Jet→SAA combination)to prepare plasma-activated saline(PAS).The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone.The concentrations of H_(2)O_(2)and NO_(2)^(-)were higher in the PAS activated by the Jet→SAA combination,while ONOO^(-)concentrations were close in the three kinds of PAS and^(1)O_(2)concentrations were higher in the PAS activated by the SAA+Jet combination.The analysis of scavengers also demonstrated that H_(2)O_(2),^(1)O_(2),and ONOO^(-)in the PAS activated by the SAA+Jet combination,and^(1)O_(2)in the PAS activated by the Jet→SAA combination played critical roles in bactericidal effects.Further,the effective placement time of the three PAS varied,and the PAS activated by the Jet→SAA combination could also inactivate 2.6-log_(10)of MRSA cells after placement for more than 60 min.The regulation of reactive species in plasma-activated water via different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field.
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金Project supported by the Sustainedly Supported Foundation by National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKJ2023KL504001)the National Natural Science Foundation of China(Grant No.62101434).
文摘Secondary electron yield(SEY)of air-exposed metals tends to be increased because of air-formed oxide,hydrocarbon,and other contaminants.This enhances the possibility of secondary electron multipacting in high-power microwave systems,resulting in undesirable occurrence of discharge damage.Al_(2)O_(3) coatings have been utilized as passive and protective layers on device packages to provide good environmental stability.We employed atomic layer deposition(ALD)to produce a series of uniform Al_(2)O_(3) coatings with appropriate thickness on Ag-plated aluminum alloy.The secondary electron emission characteristics and their variations during air exposure were observed.The escape depth of secondary electron needs to exceed the coating thickness to some extent in order to demonstrate SEY of metallic substrates.Based on experimental and calculated results,the maximum SEY of Ag-plated aluminum alloy had been maintained at 2.45 over 90 days of exposure without obvious degradation by applying 1 nm Al_(2)O_(3) coatings.In comparison,the peak SEY of untreated Ag-plated aluminum alloy grew from an initial 2.33 to 2.53,exceeding that of the 1 nm Al_(2)O_(3) sample.The ultra-thin ALDAl_(2)O_(3) coating substantially enhanced the SEY stability of metal materials,with good implications for the environmental dependability of spacecraft microwave components.
基金financially supported by the National Key Research and Development Program of China(2022YF E0138900)National Natural Science Foundation of China(21972017)+2 种基金the Fundamental Research Funds for the Central Universities(2232022D-18)Shanghai Sailing Program(22YF1400700)the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(22CGA37).
文摘Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries.Herein,an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite(CoNiLDH@NPC)composed of wood-based N and P doped active carbon(NPC)and CoNi layer double hydroxides(CoNiLDH).In the light of its large specific surface area and unique defective structure,CoNiLDH@NPC with strong interfacecoupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality.Such carbon composites show half-wave potential of 0.85 V for ORR,overpotential of 320 mV with current density of 10 mA cm^(-2) for OER,and ultra-low gap of 0.70 V.Furthermore,highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process.Consequently,zinc-air batteries using CoNiLDH@NPC show high power density(aqueous:263 mW cm^(-2),quasi-solid-state:65.8 mW cm^(-2))and long-term stability(aqueous:500 h,quasi-solid-state:120 h).This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources.
基金supported by the Shanghai Agricultural Science and Technology Program (2022-02-08-00-12-F01176)he National Natural Science Foundation of China (52006135)
文摘Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.