期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于级联残差图卷积网络的多行为推荐
1
作者 党伟超 宋楚君 +1 位作者 高改梅 刘春霞 《计算机应用》 北大核心 2025年第4期1223-1231,共9页
针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入... 针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入;其次,通过级联残差块捕获不同行为之间的联系,以不断细化不同类型行为的嵌入,从而完善用户偏好;最后,通过2种不同的聚合策略分别聚合用户和项目嵌入,并采用多任务学习(MTL)优化这些嵌入。在多个真实数据集上的实验结果表明,CRMBR模型的推荐性能优于目前的主流模型。与先进的基准模型——多行为分层图卷积网络(MB-HGCN)相比,在Tmall数据集上,所提模型的命中率(HR@20)和归一化折损累积增益(NDCG@20)分别提升了3.1%和3.9%;在Beibei数据集上,则分别提升了15.8%和16.9%;在Jdata数据集上,则分别提升了1.0%和3.3%,验证了所提模型的有效性。 展开更多
关键词 多行为推荐 级联残差 图卷积网络 聚合策略 多任务学习
在线阅读 下载PDF
基于路径感知邻域的节点分类算法
2
作者 郑文萍 王晓敏 韩兆荣 《数据采集与处理》 北大核心 2025年第1期134-146,共13页
图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同... 图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同节点的差异性。针对此,提出了一种基于路径感知邻域的节点分类算法(Path connectivity based neighbor-awareness node classification algorithm,PCNA),通过网络中的路径连通信息确定节点邻域,并自适应地感知不同长度路径对节点间相似性计算的影响权重,指导图卷积神经网络的邻域聚合过程。PCNA由邻域感知器和节点分类器组成,邻域感知器基于强化学习机制自适应地获取每个节点的聚合邻域及不同长度路径的影响权重,再利用节点间的路径连通信息得到相似性矩阵;节点分类器利用所得相似性矩阵进行邻域聚合得到节点表示,并进行节点分类。在8个真实数据集上与10种经典算法的对比实验表明了所提算法在节点分类任务上有较好的性能。 展开更多
关键词 图卷积神经网络 邻域聚合 强化学习 节点相似性 节点分类
在线阅读 下载PDF
基于交替学习的知识图谱卷积网络推荐模型
3
作者 程泽会 方兴 +1 位作者 杨剑 张芫 《计算机工程与设计》 北大核心 2025年第3期812-818,共7页
当前基于知识图谱的推荐系统无法同时将用户、项目特性与知识图谱相结合,针对这一问题提出一种基于交替学习的知识图谱卷积网络推荐模型(KGAL)。该模型包含特征提取和预测推荐两大任务。通过邻域聚合算法提取项目特征;利用交叉特征共享... 当前基于知识图谱的推荐系统无法同时将用户、项目特性与知识图谱相结合,针对这一问题提出一种基于交替学习的知识图谱卷积网络推荐模型(KGAL)。该模型包含特征提取和预测推荐两大任务。通过邻域聚合算法提取项目特征;利用交叉特征共享单元学习两个任务之间的相关性,得到最终的用户特征向量和项目特征向量;通过预测环节计算得出用户与项目的交互概率,完成推荐任务。在3种公开的电影、图书和音乐数据集上与6个常见的基线模型进行对比实验,实验结果表明,相较于其它6个推荐模型,KGAL模型具有良好的推荐性能。 展开更多
关键词 知识图谱 图卷积网络 推荐系统 交替学习 特征提取 预测 聚合
在线阅读 下载PDF
基于自适应差异化图卷积的图注意力网络表示学习算法
4
作者 吴誉兰 舒建文 《现代电子技术》 北大核心 2025年第2期51-54,共4页
为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键... 为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键相邻采样方式优先挖掘重要节点并保留随机性,完成关键邻居节点的采样;然后结合图注意力网络,通过局部关注和自适应学习权重分配将关键邻居节点特征聚合到自身节点上,增强节点的特征表示;最后经网络训练,进一步增强网络表示学习能力。实验结果表明,所提出的算法优化了节点聚合程度和边界清晰度,提高了节点分类的准确性和可视化效果,并且通过关注二阶邻居和使用双头注意力,在网络表示学习上也展现出了优越性能。 展开更多
关键词 网络表示学习 图卷积网络 自适应差异化机制 节点采样 特征聚合 网络训练 图注意力网络
在线阅读 下载PDF
基于图卷积神经网络的负荷聚合商调节能力预测
5
作者 董凌睿 吴滨源 《电测与仪表》 北大核心 2025年第6期93-101,共9页
在双碳战略推动与新型电力系统建设背景下,挖掘需求侧柔性资源可调节潜力助力电力系统供需平衡成为必然趋势。由于目前尚未积累起足够的实际需求响应数据,负荷聚合商可调节能力预测问题面临预测难度大、精度不高等问题。为此,文中提出... 在双碳战略推动与新型电力系统建设背景下,挖掘需求侧柔性资源可调节潜力助力电力系统供需平衡成为必然趋势。由于目前尚未积累起足够的实际需求响应数据,负荷聚合商可调节能力预测问题面临预测难度大、精度不高等问题。为此,文中提出一种基于图卷积神经(graph convolutional neural,GCN)网络的可调节能力预测方法。该方法依据用户历史负荷进行分类,并分别构建需求响应模型仿真得到响应样本库;在此基础上,将不同集群建模为节点,集群之间响应特性的相关性视作边,集群的响应特征视作节点特征矩阵,建立无向图;基于图卷积神经网络将调节能力预测问题转化为图中的点特征回归问题,通过图中的消息传递过程进行集群之间响应特征的共享,实现本节点历史数据与其余节点数据的时空双维特征利用,以提升预测精度。以算例分析所得的平均绝对百分比误差(mean absolute percentage error,MAPE)指标为例,GCN网络模型预测精度相较于长短期记忆(long short-term memory,LSTM)网络模型、支持向量机(support vector machine,SVM)模型、随机森林回归(random forest regression,RFR)模型分别提升了1.83%、2.10%和2.72%。 展开更多
关键词 可调节能力预测 负荷聚合商 图卷积神经网络 需求响应
在线阅读 下载PDF
联合图卷积和聚类的红外无人机集群多目标跟踪算法
6
作者 李琦 席建祥 +2 位作者 杨小冈 卢瑞涛 谢学立 《电光与控制》 北大核心 2025年第3期15-20,共6页
针对红外无人机集群多目标跟踪场景中个体间外观特征稀少,且同质化严重、集群内个体相互遮挡、平台晃动等挑战问题,提出了一种基于图卷积神经网络(GCN)与聚类算法的融合跟踪算法。首先,引入自注意力特征掩码以增强GCN对轨迹聚合的效果;... 针对红外无人机集群多目标跟踪场景中个体间外观特征稀少,且同质化严重、集群内个体相互遮挡、平台晃动等挑战问题,提出了一种基于图卷积神经网络(GCN)与聚类算法的融合跟踪算法。首先,引入自注意力特征掩码以增强GCN对轨迹聚合的效果;其次,结合交并比(IoU)和可能性C均值聚类,以增强对运动特征的提取和集群内相邻目标的区分能力;最后,采用轨迹连接模型和高斯平滑插值算法对跟踪结果进行进一步优化。所提算法融合了短时轨迹聚合和长时轨迹匹配的能力,仅利用运动信息和交互信息就能实现红外无人机集群多目标跟踪。在红外无人机集群多目标跟踪数据集上进行实验,结果表明:与其他先进跟踪算法相比,所提跟踪算法具有更高的性能指标,MOTA与IDF1分别达到84.9%与80.2%;在目标相互遮挡、平台晃动等复杂场景下也具有优越的跟踪效果。 展开更多
关键词 无人机集群 红外目标跟踪 图卷积神经网络 时空联合约束 轨迹片段聚合
在线阅读 下载PDF
基于改进图卷积神经网络的半监督分类
7
作者 郭文强 薛博丰 +1 位作者 候勇严 胡永龙 《陕西科技大学学报》 北大核心 2024年第5期191-197,共7页
图卷积神经网络(GCN)是一种用于处理图数据的深度学习模型.在经典的GCN中节点之间的聚合,未考虑节点间相似度的特征信息,影响了分类模型的准确性和模型训练的收敛速度.本文提出了一种改进聚合权重的图卷积神经网络IAW-GCN,通过利用描述... 图卷积神经网络(GCN)是一种用于处理图数据的深度学习模型.在经典的GCN中节点之间的聚合,未考虑节点间相似度的特征信息,影响了分类模型的准确性和模型训练的收敛速度.本文提出了一种改进聚合权重的图卷积神经网络IAW-GCN,通过利用描述节点相似度的曼哈顿距离度量设计了节点聚合权重函数,并用节点距离度量矩阵改进了GCN模型中的特征矩阵,使得IAW-GCN模型在消息传递聚合过程中根据相似度调节节点聚合权重.实验结果表明,在Cora、Citeseer和Pubmed标准引文数据集条件下,IAW-GCN在半监督分类任务中的分类准确率和模型训练收敛速度均优于经典GCN,为解决半监督分类问题提供了一种新方法. 展开更多
关键词 图卷积神经网络 半监督分类 聚合函数
在线阅读 下载PDF
基于高阶图卷积推理网络的任意形状文本检测 被引量:1
8
作者 刘平 姜永峰 张良 《计算机工程与应用》 CSCD 北大核心 2024年第1期263-270,共8页
通用场景文本检测被广泛应用于地图导航、无人驾驶等多个领域。场景文本方向各异且形状复杂多变,使得文本检测难度大。针对这一问题,提出一种高阶图卷积推理网络。以文本检测框架DRRG为基础,设计高阶图方案,提出高阶图卷积推理网络,扩... 通用场景文本检测被广泛应用于地图导航、无人驾驶等多个领域。场景文本方向各异且形状复杂多变,使得文本检测难度大。针对这一问题,提出一种高阶图卷积推理网络。以文本检测框架DRRG为基础,设计高阶图方案,提出高阶图卷积推理网络,扩展了推理范围,有效组合高阶邻居提供的辅助信息。改进一阶邻居的设置,降低无关组件的干扰,提高了反向传播和组件链接的效率。引入SE聚合模块为每个节点独立且自适应地生成聚合方案,进一步提高了对高阶信息的利用率。实验结果表明,改进后的网络在Total-Text、CTW-1500和ICDAR2015数据集上的平均精度(F1)分别提升了1.4、1.05和1.26个百分点。 展开更多
关键词 图像处理 文本检测 高阶图卷积网络 关系推理网络 SE聚合
在线阅读 下载PDF
基于聚合时空图卷积网络的多风场超短期风速预测 被引量:1
9
作者 徐辰晓 崔承刚 +3 位作者 郭为民 杨宁 刘备 孟青叶 《电源学报》 CSCD 北大核心 2024年第4期133-142,共10页
在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相... 在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相关系数建立连通图和权重矩阵。其次,依赖风场风速的时间动态特征,采用改进并列式卷积结构获取同一风场下多时间段的风速序列相关性。再次,利用风场风速的空间相关性和延时效应,采用二阶聚合方法将不同区域内风速的时空特征聚合。最后,经某区域风场数据验证表明,在0~4 h预测尺度下该方法在多风场超短期风速预测中具有提取时空特征并提升预测性能的效果。 展开更多
关键词 风速预测 聚合时空图卷积网络 时空相关性
在线阅读 下载PDF
融合知识图谱和图注意力网络的引文推荐算法 被引量:6
10
作者 樊海玮 鲁芯丝雨 +1 位作者 张丽苗 安毅生 《计算机应用》 CSCD 北大核心 2023年第8期2420-2425,共6页
针对传统协同过滤(CF)中的数据稀疏和冷启动问题,以及元路径、随机游走算法没有充分利用节点信息的问题,提出融合知识图谱和图注意力网络的引文推荐算法(C-KGAT)。首先,使用TransR算法将知识图谱信息映射为低维稠密向量,以获取节点的嵌... 针对传统协同过滤(CF)中的数据稀疏和冷启动问题,以及元路径、随机游走算法没有充分利用节点信息的问题,提出融合知识图谱和图注意力网络的引文推荐算法(C-KGAT)。首先,使用TransR算法将知识图谱信息映射为低维稠密向量,以获取节点的嵌入特征表示;其次,利用图注意力网络通过多通道融合机制聚合邻居节点信息以丰富目标节点的语义,并捕获节点间高阶连通性;接着,在不影响网络的深度或宽度的情况下,引入动态卷积层动态地聚合邻居节点信息以提升模型的表达能力;最后,通过预测层计算用户和引文的交互概率。在公开数据集AAN(ACL Anthology Network)和计算机科学文献库(DBLP)上的实验结果表明,所提算法的效果优于所有对比模型,所提算法的MRR(Mean Reciprocal Rank)相较于次优模型NNSelect分别提升了6.0和3.4个百分点,所提算法的精确率和召回率指标也有不同程度的提升,验证了算法的有效性。 展开更多
关键词 知识图谱 图注意力网络 引文推荐 动态卷积 聚合
在线阅读 下载PDF
基于邻居信息聚合的子图同构匹配算法 被引量:7
11
作者 徐周波 李珍 +1 位作者 刘华东 李萍 《计算机应用》 CSCD 北大核心 2021年第1期43-47,共5页
图匹配在现实中被广泛运用,而子图同构匹配是其中的研究热点,具有重要的科学意义与实践价值。现有子图同构匹配算法大多基于邻居关系来构建约束条件,而忽略了节点的局部邻域信息。对此,提出了一种基于邻居信息聚合的子图同构匹配算法。... 图匹配在现实中被广泛运用,而子图同构匹配是其中的研究热点,具有重要的科学意义与实践价值。现有子图同构匹配算法大多基于邻居关系来构建约束条件,而忽略了节点的局部邻域信息。对此,提出了一种基于邻居信息聚合的子图同构匹配算法。首先,将图的属性和结构导入到改进的图卷积神经网络中进行特征向量的表示学习,从而得到聚合后的节点局部邻域信息;然后,根据图的标签、度等特征对匹配顺序进行优化,以提高算法的效率;最后,将得到的特征向量和优化的匹配顺序与搜索算法相结合,建立子图同构的约束满足问题(CSP)模型,并结合CSP回溯算法对模型进行求解。实验结果表明,与经典的树搜索算法和约束求解算法相比,该算法可以有效地提高子图同构的求解效率。 展开更多
关键词 子图同构 约束满足问题 图卷积神经网络 信息聚合 图匹配
在线阅读 下载PDF
基于双向自适应门控图卷积网络的交通流预测 被引量:5
12
作者 贺文武 裴博彧 +2 位作者 李雅婷 刘小雨 徐少兵 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第1期187-197,共11页
针对路网交通流时空依赖上的高度复杂性以及数据污染的现实性,基于图神经网络构建一种新型时空融合交通流预测模型。考虑交通流数据中的缺失、异常与噪声,模型首先对数据进行特征重构与融合,在保持时序特性的前提下,以滑动时间窗口平滑... 针对路网交通流时空依赖上的高度复杂性以及数据污染的现实性,基于图神经网络构建一种新型时空融合交通流预测模型。考虑交通流数据中的缺失、异常与噪声,模型首先对数据进行特征重构与融合,在保持时序特性的前提下,以滑动时间窗口平滑交通流特征信息,做好数据准备。考虑交通流的实际有向性,主体模型采用正、反双路网络设计以分向学习交通流时空特征的有效表示。双路网络结构相同,以轻量有效的因果卷积作为模型的时序特征提取器,以多层自适应门控图卷积神经网络作为模型组件提取空间特征,实现信息的自适应聚合与传播,再通过纵向信息聚合层轻量化地实现不同局部视野下的信息融合,基于注意力有效权衡两路网络的信息贡献并将其聚合,建立双向自适应门控图卷积网络交通流预测模型。在真实交通流基准数据集PEMS03、PEMS04、PEMS07和PEMS08上进行模型的有效性验证,结果表明,所建模型在4个数据集上3个预测精度指标均优于基线模型。同时,相较于最先进的基线模型时空同步图卷积网络与时空融合图神经网络,所建模型能以数倍甚至数十倍比例的参数轻量化与低训练时间代价获得更高的预测精度。 展开更多
关键词 智能交通 自适应门控 图卷积 双向图网络 特征融合 纵向层间聚合
在线阅读 下载PDF
融合图卷积注意力机制的协同过滤推荐方法 被引量:5
13
作者 朱金侠 孟祥福 +1 位作者 邢长征 张霄雁 《智能系统学报》 CSCD 北大核心 2023年第6期1295-1304,共10页
图卷积神经网络(graph convolutional neural network,GCN)因其强大的建模能力引起了广泛关注,在商品推荐中,现有的图卷积协同过滤技术忽略了邻居节点在传播聚合过程中的重要性,使得用户和商品的嵌入向量表达不够合理。为了解决这一问题... 图卷积神经网络(graph convolutional neural network,GCN)因其强大的建模能力引起了广泛关注,在商品推荐中,现有的图卷积协同过滤技术忽略了邻居节点在传播聚合过程中的重要性,使得用户和商品的嵌入向量表达不够合理。为了解决这一问题,本文提出一种融合图卷积注意力机制的协同过滤推荐模型。首先通过图嵌入技术将用户-项目的交互信息映射到低维稠密的向量空间;其次通过堆叠多层的图卷积网络学习用户与项目间的高阶交互信息;同时融合注意力机制为邻居节点自适应地分配权重,不仅可以捕获更具代表性的邻居影响,还使得在聚合邻居节点的特征信息时,仅依赖于节点之间的特征表达,使其独立于图结构,提高了模型的泛化能力;最后设计了分层聚合函数,将图卷积层学习到的多个嵌入向量加权聚合,使用内积函数得到用户-项目之间的关联分数。在3个真实数据上进行的泛化实验,实验结果验证了该方法的有效性。 展开更多
关键词 图嵌入技术 图卷积神经网络 注意力机制 协同过滤 用户偏好 高阶交互 邻域聚合
在线阅读 下载PDF
融合知识图谱和轻量级图卷积网络推荐系统的研究 被引量:6
14
作者 马甜甜 杨长春 +2 位作者 严鑫杰 贾音 蔡聪 《智能系统学报》 CSCD 北大核心 2022年第4期721-727,共7页
基于协同过滤的算法是推荐系统中最重要的方法,由于冷启动和数据稀疏性的特点,限制了其推荐性能。为了应对以上问题,提出了知识图谱和轻量级图卷积网络推荐系统相结合的模型,该模型通过将知识图谱中的各个实体(项目)进行多次迭代嵌入传... 基于协同过滤的算法是推荐系统中最重要的方法,由于冷启动和数据稀疏性的特点,限制了其推荐性能。为了应对以上问题,提出了知识图谱和轻量级图卷积网络推荐系统相结合的模型,该模型通过将知识图谱中的各个实体(项目)进行多次迭代嵌入传播以获取更多的高阶邻域信息,通过轻量聚合器进行聚合,进而预测用户和项目之间的评分。最后,在3个真实的数据集上MovieLens-20M、Last.FM和Book-Crossing的实验结果表明,该模型与其他基准模型相比可以得到较好的性能。 展开更多
关键词 图卷积网络 知识图谱 推荐系统 嵌入传播 协同过滤 稀疏性 邻域信息 轻量聚合器
在线阅读 下载PDF
基于邻域聚合与CNN的知识图谱实体类型补全 被引量:4
15
作者 邹长龙 安敬民 李冠宇 《计算机工程》 CAS CSCD 北大核心 2023年第3期134-141,共8页
现有知识图谱实体类型补全模型通过对实体和实体类型进行建模,以解决知识图谱中实体缺失的实体类型,但未有效地利用实体之间的关系,导致模型的实体类型补全性能不佳。提出一种基于邻域聚合与卷积神经网络的知识图谱实体类型补全模型NACE... 现有知识图谱实体类型补全模型通过对实体和实体类型进行建模,以解决知识图谱中实体缺失的实体类型,但未有效地利用实体之间的关系,导致模型的实体类型补全性能不佳。提出一种基于邻域聚合与卷积神经网络的知识图谱实体类型补全模型NACE2T,其采用编码器-解码器的结构。基于注意力机制设计利用关系信息的编码器,其使用注意力机制为实体邻域中的每个关系-实体对分配不同的权重,以聚合实体邻域中实体和关系的信息,从而利用实体之间的关系。基于卷积神经网络设计一个新的知识图谱实体类型补全模型CE2T,将其作为解码器,对编码器输出的实体嵌入和实体类型嵌入进行建模与实体类型补全。实验结果表明,相比ConnectE模型,NACE2T模型在数据集FB15KET上的HITS@1和HITS@3提高约1.5%,在数据集YAGO43KET上的MRR和HITS@3提高约6%,HITS@1提高约9%,能够有效地推断知识图谱中实体缺失的实体类型。 展开更多
关键词 知识图谱 实体类型 邻域聚合 注意力机制 关系-实体对 卷积神经网络
在线阅读 下载PDF
基于样本间潜在关系的多变量时间序列分类 被引量:1
16
作者 唐胜唐 吴共庆 +2 位作者 台昌杨 杨泽 张赞 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第12期1642-1650,共9页
多变量时间序列(multivariate time series,MTS)分类任务旨在确定多变量时间序列样本的标签。多变量时间序列数据存在时序关系和样本相似性关系等丰富的关系信息,然而现有的算法未能充分利用关系信息导致分类性能难以提升。基于此,文章... 多变量时间序列(multivariate time series,MTS)分类任务旨在确定多变量时间序列样本的标签。多变量时间序列数据存在时序关系和样本相似性关系等丰富的关系信息,然而现有的算法未能充分利用关系信息导致分类性能难以提升。基于此,文章提出一种基于图卷积网络(graph convolutional network,GCN)的多变量时间序列分类方法,通过挖掘样本间的潜在关系来提高分类性能。为了有效表示样本关系,设计基于样本相似度的构图规则,对样本数据进行建模从而将样本的时序特征和潜在关系信息映射到图空间中,提出基于图卷积的分类模型,通过聚合样本特征来捕获有利于分类的潜在样本关系,更新到样本自身特征向量以提升分类精度。在11个公共数据集上的大量实验结果表明,该文所提算法优于12种对比算法,可见通过挖掘时间序列数据之间潜在的关系用于分类对分类结果具有重要影响,从而为处理时间序列分类问题提供一种新的途径。 展开更多
关键词 多变量时间序列分类 样本相似度 图卷积网络(GCN) 潜在关系 特征聚合
在线阅读 下载PDF
基于One-Shot聚合自编码器的图表示学习 被引量:2
17
作者 袁立宁 刘钊 《计算机应用》 CSCD 北大核心 2023年第1期8-14,共7页
自编码器(AE)是一种高效的图数据表示学习模型,但大多数图自编码器(GAE)为浅层模型,其效率会随着隐藏层的增加而降低。针对上述问题,提出基于One-Shot聚合(OSA)和指数线性(ELU)函数的GAE模型OSA-GAE和图变分自编码器模型OSA-VGAE。首先... 自编码器(AE)是一种高效的图数据表示学习模型,但大多数图自编码器(GAE)为浅层模型,其效率会随着隐藏层的增加而降低。针对上述问题,提出基于One-Shot聚合(OSA)和指数线性(ELU)函数的GAE模型OSA-GAE和图变分自编码器模型OSA-VGAE。首先,利用多层图卷积网络(GCN)构建编码器,并引入OSA和ELU函数;然后,在解码阶段使用内积解码器恢复图的拓扑结构;此外,为了防止模型训练过程中的参数过拟合,在损失函数中引入正则化项。实验结果表明,OSA和ELU函数可以有效提高深层GAE的性能,改善模型的梯度信息传递。在使用6层GCN时,基准引文数据集PubMed的链接预测任务中,深层OSA-VGAE相较于原始的VGAE在ROC曲线下的面积(AUC)和平均精度(AP)上分别提升了8.67和6.85个百分点,深层OSA-GAE相较于原始的GAE在AP和AUC上分别提升了6.82和4.39个百分点。 展开更多
关键词 自编码器 图自编码器 图卷积网络 One-Shot聚合 链接预测
在线阅读 下载PDF
基于非均匀邻居节点采样的聚合式图嵌入方法
18
作者 陈思 蔡晓东 +1 位作者 侯珍珍 李波 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第11期2163-2167,2205,共6页
针对已有聚合式图嵌入方法多采用均匀采样函数为图中节点构建邻域,即仅随机采样邻居节点,而忽略各邻居节点自身性质的差异的问题,提出基于度值的非均匀邻居节点采样方法.针对目标节点,优先采样其度值较大的邻居节点;隐藏一批度值较小的... 针对已有聚合式图嵌入方法多采用均匀采样函数为图中节点构建邻域,即仅随机采样邻居节点,而忽略各邻居节点自身性质的差异的问题,提出基于度值的非均匀邻居节点采样方法.针对目标节点,优先采样其度值较大的邻居节点;隐藏一批度值较小的邻居节点,使它们在采样过程中不出现;在邻居节点集中随机采样剩余的节点以保留一定的采样随机性,这些随机采样的节点与优先采样的节点组成目标节点的邻域.将所提出的非均匀邻居节点采样方法应用于图嵌入过程,在Reddit数据集上的图嵌入分类F1分数为91.7%,该结果优于几个知名的图嵌入方法的结果.在重叠社团数据集PPI上的实验证实提出方法能够为图数据生成更高质量的嵌入. 展开更多
关键词 图嵌入 网络嵌入 非均匀采样 图卷积网络 邻域聚合
在线阅读 下载PDF
基于超邻接图的异质信息网络表征学习
19
作者 杨彬 王轶彤 《计算机工程》 CAS CSCD 北大核心 2023年第10期13-21,共9页
异质信息网络往往包含不同类型的节点和关系,丰富的语义信息和复杂的关系对目前异质信息网络的表征学习提出了巨大的挑战。现有多数方法通常使用预定义的元路径来捕获异质的语义信息和结构信息,但成本高、覆盖率低,且不能准确有效地捕... 异质信息网络往往包含不同类型的节点和关系,丰富的语义信息和复杂的关系对目前异质信息网络的表征学习提出了巨大的挑战。现有多数方法通常使用预定义的元路径来捕获异质的语义信息和结构信息,但成本高、覆盖率低,且不能准确有效地捕获和学习有影响力的高阶邻居节点。提出HIN-HG模型来解决以上问题。HIN-HG通过生成异质信息网络的超邻接图来准确有效地捕获对目标节点有影响力的邻居节点,并使用带有多通道机制的卷积神经网络聚合在不同关系下的不同类型的邻居节点。HIN-HG可以自动地学习不同邻居节点和元路径的权重而无须进行手动指定,同时可以捕获全图范围内和目标节点相似的节点作为高阶邻居,并通过信息传播有效地更新目标节点的表征。在DBLP、ACM和IMDB真实数据集上的实验结果表明,在节点分类任务中,HIN-HG较HAN、GTN、HGSL等前沿的异质信息网络表征学习方法性能更优,Macro-F1和Micro-F1多分类评估指标平均提高5.6和5.7个百分点,提高了节点分类的准确性和有效性。 展开更多
关键词 异质信息网络 元路径 邻域聚合 表征学习 图卷积
在线阅读 下载PDF
高阶图神经联合训练的装备剩余寿命预测
20
作者 陈凯诺 张福光 +2 位作者 张涵 尹延涛 杜光传 《现代防御技术》 2025年第4期148-159,共12页
针对现有小子样高可靠性装备剩余寿命预测方法精度较低、预测泛化性较差等不足,提出了一种基于高阶邻域聚合图卷积神经网络和双向门控单元联合训练的装备剩余寿命评估方法。该方法将公开的大样本数据集和装备关键部件测试数据等小子样... 针对现有小子样高可靠性装备剩余寿命预测方法精度较低、预测泛化性较差等不足,提出了一种基于高阶邻域聚合图卷积神经网络和双向门控单元联合训练的装备剩余寿命评估方法。该方法将公开的大样本数据集和装备关键部件测试数据等小子样本信息构建为属性图,整合不同阶邻居信息,捕获装备采样信息间的高阶关联特征,再使用双向门控单元进行寿命预测,并通过预训练-微调的联合训练策略提升模型泛化能力。提升了装备剩余寿命预测的精度,提升了不同场景下的寿命预测的泛化性,并通过仿真实验和消融实验证明了方法各个模块的必要性。与其他经典方法相比,该方法预测的准确性和稳健性均有显著提升。有效利用了公开数据集和装备小子样数据之间的关联信息,为复杂装备系统的剩余寿命预测评估提供了一种新的解决方案。 展开更多
关键词 剩余寿命预测评估 图卷积神经网络 高阶邻域聚合 双向门控循环单元 联合训练
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部