High-dimensional quantum resources provide the ability to encode several bits of information on a single photon,which can particularly increase the secret key rate rate of quantum key distribution(QKD) systems. Recent...High-dimensional quantum resources provide the ability to encode several bits of information on a single photon,which can particularly increase the secret key rate rate of quantum key distribution(QKD) systems. Recently, a practical four-dimensional QKD scheme based on time-bin quantum photonic state, only with two single-photon avalanche detectors as measurement setup, has been proven to have a superior performance than the qubit-based one. In this paper, we extend the results to our proposed eight-dimensional scheme. Then, we consider two main practical factors to improve its secret key bound. Concretely, we take the afterpulse effect into account and apply a finite-key analysis with the intensity fluctuations.Our secret bounds give consideration to both the intensity fluctuations and the afterpulse effect for the high-dimensional QKD systems. Numerical simulations show the bound of eight-dimensional QKD scheme is more robust to the intensity fluctuations but more sensitive to the afterpulse effect than the four-dimensional one.展开更多
In this study,we present the large photomultiplier tube(PMT)afterpulse measurement results obtained from the Jiangmen underground neutrino observatory(JUNO)experiment.A total of 11 dynode-PMTs(R12860)from the Hamamats...In this study,we present the large photomultiplier tube(PMT)afterpulse measurement results obtained from the Jiangmen underground neutrino observatory(JUNO)experiment.A total of 11 dynode-PMTs(R12860)from the Hamamatsu company(Hamamatsu Photonics K.K.(HPK))and 150 micro-channel plate PMTs(MCP-PMTs,GDB-6201)from the NNVT company(North Night Vision Technology Co.,Ltd.(NNVT))were tested.Subsequently,an afterpulse model was built according to the afterpulse time distribution and the probability of occurrence for these two types of PMTs.The average ratio of the total afterpulse charge with a delay between 0.5μs and 20μs to the primary pulse charge is∼5.7%(13.2%)for the tested MCPPMTs(dynode-PMTs).The JUNO experiment will deploy 20,01220-inch PMTs;this study will benefit detector simulation,event reconstruction,and data analysis regarding the JUNO experiment.展开更多
In principle,the asynchronous measurement-device-independent quantum key distribution(AMDI-QKD)can surpass the key rate capacity without phase tracking and phase locking.However,practical imperfections in sources or d...In principle,the asynchronous measurement-device-independent quantum key distribution(AMDI-QKD)can surpass the key rate capacity without phase tracking and phase locking.However,practical imperfections in sources or detections would dramatically depress its performance.Here,we present an improved model on AMDI-QKD to reduce the influence of these imperfections,including intensity fluctuation,the afterpulse effect,and the dead time of detectors.Furthermore,we carry out corresponding numerical simulations.Simulation results show that,by implementing our present work,it can have more than 100 km longer secure transmission distance and one order of magnitude enhancement in the key generation rate after 320 km compared with the standard method.Moreover,our model can still break the Pirandola–Laurenza–Ottaviani–Banchi(PLOB)bound even under realistic experimental conditions.展开更多
In Ga As/In P single photon avalanche diodes(SPADs) are more and more available in many research fields. They are affected by afterpulsing which leads to a poor single photon detection probability. We present an In ...In Ga As/In P single photon avalanche diodes(SPADs) are more and more available in many research fields. They are affected by afterpulsing which leads to a poor single photon detection probability. We present an In Ga As/In P avalanche photodiode with an active quenching circuit on an application specific integrated circuit(ASIC). It can quench the avalanche rapidly and then reduce the afterpulse rate. Also this quenching circuit can operate in both free-running and gated modes.Furthermore, a new technique is introduced to characterize the influence of the higher order of afterpulses, which uses a program running on a field programmable gate array(FPGA) integrated circuit.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFA0309702)the National Natural Science Foundation of China(Grant Nos.62101597,61605248,61675235,and 61505261)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province,China(Grant Nos.202300410534 and 202300410532)the Anhui Initiative Fund in Quantum Information Technologies。
文摘High-dimensional quantum resources provide the ability to encode several bits of information on a single photon,which can particularly increase the secret key rate rate of quantum key distribution(QKD) systems. Recently, a practical four-dimensional QKD scheme based on time-bin quantum photonic state, only with two single-photon avalanche detectors as measurement setup, has been proven to have a superior performance than the qubit-based one. In this paper, we extend the results to our proposed eight-dimensional scheme. Then, we consider two main practical factors to improve its secret key bound. Concretely, we take the afterpulse effect into account and apply a finite-key analysis with the intensity fluctuations.Our secret bounds give consideration to both the intensity fluctuations and the afterpulse effect for the high-dimensional QKD systems. Numerical simulations show the bound of eight-dimensional QKD scheme is more robust to the intensity fluctuations but more sensitive to the afterpulse effect than the four-dimensional one.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA10011100),Joint Institute of Nuclear Research (JINR),Russia and Lomonosov Moscow State University in Russia,joint Russian Science Foundation (RSF),DFG (Deutsche Forschungsgemeinschaft)National Natural Science Foundation of China (Nos. 12090062 and 12075087)
文摘In this study,we present the large photomultiplier tube(PMT)afterpulse measurement results obtained from the Jiangmen underground neutrino observatory(JUNO)experiment.A total of 11 dynode-PMTs(R12860)from the Hamamatsu company(Hamamatsu Photonics K.K.(HPK))and 150 micro-channel plate PMTs(MCP-PMTs,GDB-6201)from the NNVT company(North Night Vision Technology Co.,Ltd.(NNVT))were tested.Subsequently,an afterpulse model was built according to the afterpulse time distribution and the probability of occurrence for these two types of PMTs.The average ratio of the total afterpulse charge with a delay between 0.5μs and 20μs to the primary pulse charge is∼5.7%(13.2%)for the tested MCPPMTs(dynode-PMTs).The JUNO experiment will deploy 20,01220-inch PMTs;this study will benefit detector simulation,event reconstruction,and data analysis regarding the JUNO experiment.
基金Project supported by Natural Science Foundation of Jiangsu Province(Grant Nos.BE2022071 and BK20192001)the National Natural Science Foundation of China(Grant Nos.12074194,62101285,62471248,and 12104240)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX220954).
文摘In principle,the asynchronous measurement-device-independent quantum key distribution(AMDI-QKD)can surpass the key rate capacity without phase tracking and phase locking.However,practical imperfections in sources or detections would dramatically depress its performance.Here,we present an improved model on AMDI-QKD to reduce the influence of these imperfections,including intensity fluctuation,the afterpulse effect,and the dead time of detectors.Furthermore,we carry out corresponding numerical simulations.Simulation results show that,by implementing our present work,it can have more than 100 km longer secure transmission distance and one order of magnitude enhancement in the key generation rate after 320 km compared with the standard method.Moreover,our model can still break the Pirandola–Laurenza–Ottaviani–Banchi(PLOB)bound even under realistic experimental conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178010)the Fundamental Research Funds for the Central Universities,China(Grant No.bupt 2014TS01)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant No.201318)the National Program for Basic Research of China(Grant No.2010CB923202)
文摘In Ga As/In P single photon avalanche diodes(SPADs) are more and more available in many research fields. They are affected by afterpulsing which leads to a poor single photon detection probability. We present an In Ga As/In P avalanche photodiode with an active quenching circuit on an application specific integrated circuit(ASIC). It can quench the avalanche rapidly and then reduce the afterpulse rate. Also this quenching circuit can operate in both free-running and gated modes.Furthermore, a new technique is introduced to characterize the influence of the higher order of afterpulses, which uses a program running on a field programmable gate array(FPGA) integrated circuit.