电子信息系统小型化、轻量化、无人化、一体化的发展趋势要求电子封装持续减小尺寸、降低重量和减少功耗(SWaP,即Size,Weight and Power)。传统的基于可伐合金、铝合金和高硅铝的微电子封装材料难以同时满足大跨度热匹配、良好的钎焊与...电子信息系统小型化、轻量化、无人化、一体化的发展趋势要求电子封装持续减小尺寸、降低重量和减少功耗(SWaP,即Size,Weight and Power)。传统的基于可伐合金、铝合金和高硅铝的微电子封装材料难以同时满足大跨度热匹配、良好的钎焊与激光熔焊性能、高导热、高比刚度、高比强度和良好的可制造性,无法适应SWaP要求。功能梯度铝基复合材料综合了铝合金与铝硅、碳化硅铝等先进复合材料的优点,既具备大跨度热匹配、高导热率的特点,又具备精细加工和良好的激光熔焊等工艺性能,是新一代微电子封装材料的研究热点。本文综述了功能梯度铝基复合材料的优势、制备方法和封装应用情况,并对该材料制备与应用中存在的问题进行了总结,最后对其未来研究方向进行了展望。展开更多
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d...Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.展开更多
In recent years,composite materials have been used in many industries such as in automotive,aerospace,telecommunication,marine,furniture,construction and defence.Body amour and tank spall liners are examples of the us...In recent years,composite materials have been used in many industries such as in automotive,aerospace,telecommunication,marine,furniture,construction and defence.Body amour and tank spall liners are examples of the use of composites in defence industry.Composites have many different attributes that are unique over conventional materials like metals,polymers and ceramics.Those attributes include light weight,high specific stiffness and strength properties,corrosion resistance,aesthetically pleasing and ease of fabrication.Advanced composites such as aramid and carbon fibre polymer composites,metal matrix composites,ceramic matrix composites,and nanocomposites are among material contenders in defence technology applications requiring excellent structural integrity.Composites are also used in some non-structural applications in selected components utilising the low cost advantage of glass fibre and natural fibre composites.展开更多
文摘电子信息系统小型化、轻量化、无人化、一体化的发展趋势要求电子封装持续减小尺寸、降低重量和减少功耗(SWaP,即Size,Weight and Power)。传统的基于可伐合金、铝合金和高硅铝的微电子封装材料难以同时满足大跨度热匹配、良好的钎焊与激光熔焊性能、高导热、高比刚度、高比强度和良好的可制造性,无法适应SWaP要求。功能梯度铝基复合材料综合了铝合金与铝硅、碳化硅铝等先进复合材料的优点,既具备大跨度热匹配、高导热率的特点,又具备精细加工和良好的激光熔焊等工艺性能,是新一代微电子封装材料的研究热点。本文综述了功能梯度铝基复合材料的优势、制备方法和封装应用情况,并对该材料制备与应用中存在的问题进行了总结,最后对其未来研究方向进行了展望。
基金University Synergy Innovation Program of Anhui Province(GXXT-2022-083)Science and Technology Plan Project of Wuhu City,China(2023kx12)Anhui Provincial Department of Education New Era Education Project(2023xscx070)。
文摘Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.
文摘In recent years,composite materials have been used in many industries such as in automotive,aerospace,telecommunication,marine,furniture,construction and defence.Body amour and tank spall liners are examples of the use of composites in defence industry.Composites have many different attributes that are unique over conventional materials like metals,polymers and ceramics.Those attributes include light weight,high specific stiffness and strength properties,corrosion resistance,aesthetically pleasing and ease of fabrication.Advanced composites such as aramid and carbon fibre polymer composites,metal matrix composites,ceramic matrix composites,and nanocomposites are among material contenders in defence technology applications requiring excellent structural integrity.Composites are also used in some non-structural applications in selected components utilising the low cost advantage of glass fibre and natural fibre composites.