期刊文献+
共找到16,502篇文章
< 1 2 250 >
每页显示 20 50 100
Interactive Genetic Algorithms with Fitness Adjustment 被引量:3
1
作者 GUO Guang-song GONG Dun-wei HAO Guo-sheng ZHANG Yong 《Journal of China University of Mining and Technology》 EI 2006年第4期480-484,共5页
Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is... Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user’s preference mechanisms. Characteristics of the two noises are presented aiming at the application of interac- tive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual’s fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm’s performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises. 展开更多
关键词 genetic algorithms interactive genetic algorithms NOISES strategies for reducing noises
在线阅读 下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
2
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
3
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
4
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor genetic algorithm Profile optimization Matlab programming Overflow area
在线阅读 下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
5
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
在线阅读 下载PDF
NOVEL APPROACH TO LOCATOR LAYOUT OPTIMIZATION BASED ON GENETIC ALGORITHM 被引量:5
6
作者 吴铁军 楼佩煌 秦国华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期176-182,共7页
Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture ... Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively. 展开更多
关键词 locator layout locating error fuzzy judgment genetic algorithm(GA)
在线阅读 下载PDF
Two-Dimensional Entropy Method Based on Genetic Algorithm 被引量:4
7
作者 王蕾 沈庭芝 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期184-188,共5页
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro... Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation. 展开更多
关键词 THRESHOLDING image segmentation entropy method genetic algorithm
在线阅读 下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
8
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
在线阅读 下载PDF
Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms 被引量:3
9
作者 胡昌振 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期49-54,共6页
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ... To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively. 展开更多
关键词 MULTISENSOR data fusion fuzzy random genetic algorithm
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
10
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
在线阅读 下载PDF
DENSE DISPARITY MAP ESTIMATION USING GENETIC ALGORITHMS 被引量:1
11
作者 王彪 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期184-191,共8页
An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a mu... An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work. 展开更多
关键词 stereo correspondence disparity map genetic algorithms coarse-to-fine strategy
在线阅读 下载PDF
APPROXIMATION TECHNIQUES FOR APPLICATION OF GENETIC ALGORITHMS TO STRUCTURAL OPTIMIZATION 被引量:1
12
作者 金海波 丁运亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期147-154,共8页
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str... Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model. 展开更多
关键词 approximation techniques segment approximation model genetic algorithms structural optimization sensitivity analysis
在线阅读 下载PDF
LOW-THRUST ORBIT TRANSFER BY COMBINING GENETIC ALGORITHM WITH REFINED Q-LAW METHOD
13
作者 程月华 姜斌 +2 位作者 孙俊 张娴 侯倩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第4期313-320,共8页
A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding wh... A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision. 展开更多
关键词 orbit transfer genetic algorithm Q-law method low thrust
在线阅读 下载PDF
INTERCEPT OPTIMIZATION OF EXO-ATMOSPHERIC INTERCEPTOR BASED ON GENETIC ALGORITHM
14
作者 汤一华 陈士橹 +1 位作者 万自明 徐敏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第1期25-30,共6页
An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight ... An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight stages are constructed ; and the velocity gain midcourse guidance law and the robust variable structure terminal guidance law are designed. Then the optimization parameters and their constraints affecting the intercept performance are determined. The genetic algorithm (GA) with the advantage of global optimization is used to deal with the intercept optimization problem. The performance index of the optimization is composed of the minimum fuel consumption and the minimum miss distance of the interception. Finally, optimization results of GA and the complex algorithm (CA) are compared. Simulation results show that compared with the traditional opti- mization method, GA can converge to the global optimization better in solving the complex constrained nonlinear combinatorial optimization of the exo-atmospheric interceptor, and reduce the fuel consumption and the miss distance. 展开更多
关键词 exo-atmospheric interceptor genetic algorithm midcourse guidance terminal guidance
在线阅读 下载PDF
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
15
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
在线阅读 下载PDF
Analysis of Mine Ventilation Network Using Genetic Algorithm
16
作者 谢贤平 冯长根 王海亮 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期33-38,共6页
Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the ... Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the network. Results\ A modified genetic algorithm is presented with its characteristics and principle. Instead of working on the conventional bit by bit operation, both the crossover and mutation operators are handled in real values by the proposed algorithms. To prevent the system from turning into a premature problem, the elitists from two groups of possible solutions are selected to reproduce the new populations. Conclusion\ The simulation results show that the method outperforms the conventional nonlinear programming approach whether from the viewpoint of the number of iterations required to find the optimum solutions or from the final solutions obtained. 展开更多
关键词 mine ventilation network nonlinear programming OPTIMIZATION genetic algorithms
在线阅读 下载PDF
Research on Modified Shifting Balance Genetic Algorithms 被引量:1
17
作者 MA Hong-mei GONG Dun-wei 《Journal of China University of Mining and Technology》 EI 2007年第2期188-192,共5页
The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search ... The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search capability of the core population,the sub-space method was used to generate uniformly distributed initial colony populations over the decision variable space. The core population was also dynamically divided,making simultaneous searching in several local spaces possible. The algorithm proposed in this paper was compared to the original one by searching for the optimum of a complicated multi-modal function. The results indicate that the solutions obtained by the modified algorithm are better than those of the original algorithm. 展开更多
关键词 genetic algorithms shifting balance genetic algorithms small spaces dynamic partition multi-modal function
在线阅读 下载PDF
Optimization of Linear Antenna Arrays Based on Genetic Algorithms
18
作者 王宏建 高本庆 刘瑞祥 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期180-183,共4页
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra... The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields. 展开更多
关键词 GAIN front to back ratio genetic algorithm OPTIMIZATION Yagi Uda antenna Log periodic dipole antenna
在线阅读 下载PDF
Technique of Error Concealment for Block-Based Image Coding Using Genetic Algorithm
19
作者 杨守义 罗伟雄 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期164-168,共5页
Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh... Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly. 展开更多
关键词 block based image coding genetic algorithm error concealment
在线阅读 下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
20
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部