In response to current development of materials in nano-science.characterisation of thin coating adhesion ona nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more techn...In response to current development of materials in nano-science.characterisation of thin coating adhesion ona nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced.With a review of technology and mechanisms of evaluating the adhesion failure of coatings.three techniques,nano-im-pact,nano-scratch and nano-indentation techniques,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano scratch and nano-indentation techniques are very useful tools particularly in charactering the performance of thin coatings under nano-abra sive wear conditions.However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service.Instead,results of the new dynamic testing technique。展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In ...Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In this study, grit-blasting of an AISI 4130 steel (of different heat treatmen ts) with Al 2O 3 particles was studied. Various grit-blasting parameters such as blasting particle size, the distance between blasting nozzle and the work pi ece (25, 30 and 40 cm.), blasting pressure (3,4,5,6 and 7 bars), blasting time ( 3, 6 and 10 seconds), and the blasting angle (45° and 90°) were examined in or der to find the optimum roughness. The mean roughness (Ra) of the grit-blasted surfaces were measured and the vari ations of the roughness with respect to the above mentioned variables were studi ed. The results show that by increasing blasting time, surface roughness increas es up to a maximum and then slightly decreases it with further duration of t he process. On the other hand a lengthy blasting causes some undesirable results such as an increase in residual particles between surface irregularities. There fore an optimum blasting time is of great importance. Increasing the blasting pr essure also provides a rougher surface, but in grit blasting of harder specimens the surface roughness decreases when the pressure reaches a certain limit. About the blasting angle, it was noticed that an angle of 45° results in less r esidual particles between the surface irregularities, in comparison to the angle of 90°. After grit-blasting, the specimens were plasma spray coated with 80% ZrO 2-20 % Y 2O 3 powder. The adhesive strength of the coating to the substrate was the n measured according to the DIN 50160 standard. The results show that for a certain base metal, the adhesive strength is directl y related to the surface roughness of the base material. Residual particles afte r grit-blasting the surface of the specimens can also have a strong deteriorati ng effect on adhesive strength. Finally, it was shown that the hardness of the b ase material had a direct effect on the adhesive strength of the sprayed coating s.展开更多
In the present work,TiAlN coatings were deposited on Ti(C,N)-based cermet substrates by physical vapor deposition method.Emphasis was focused on the influence of grain size of cermet substrates on the microstructure,g...In the present work,TiAlN coatings were deposited on Ti(C,N)-based cermet substrates by physical vapor deposition method.Emphasis was focused on the influence of grain size of cermet substrates on the microstructure,growth behavior,mechanical properties,adhesion strength and wear behavior of the coatings.The results show that finer Ti(C,N)grain size leads to higher nucleation density and lower growth rate of coatings,indicating the crystallite size of the TiAlN coatings decreases with decreasing Ti(C,N)grain size.Nanoindentation tests show that the coatings deposited on cermets of the finest grain size exhibit the highest hardness(H),elastic modulus(E),H/E and H3/E2 of 34.5 GPa,433.2 GPa,0.080 and 0.22,respectively.The adhesion strength between coating and substrate is also enhanced with decreasing Ti(C,N)grain size by scratch test,which corresponds to the grain size and H/E and H3/E2 of the coating.Besides,the lower surface roughness and better mechanical properties of the coating deposited on finer grained cermet contribute to the better wear resistance of the coating.展开更多
文摘In response to current development of materials in nano-science.characterisation of thin coating adhesion ona nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced.With a review of technology and mechanisms of evaluating the adhesion failure of coatings.three techniques,nano-im-pact,nano-scratch and nano-indentation techniques,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano scratch and nano-indentation techniques are very useful tools particularly in charactering the performance of thin coatings under nano-abra sive wear conditions.However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service.Instead,results of the new dynamic testing technique。
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
文摘Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In this study, grit-blasting of an AISI 4130 steel (of different heat treatmen ts) with Al 2O 3 particles was studied. Various grit-blasting parameters such as blasting particle size, the distance between blasting nozzle and the work pi ece (25, 30 and 40 cm.), blasting pressure (3,4,5,6 and 7 bars), blasting time ( 3, 6 and 10 seconds), and the blasting angle (45° and 90°) were examined in or der to find the optimum roughness. The mean roughness (Ra) of the grit-blasted surfaces were measured and the vari ations of the roughness with respect to the above mentioned variables were studi ed. The results show that by increasing blasting time, surface roughness increas es up to a maximum and then slightly decreases it with further duration of t he process. On the other hand a lengthy blasting causes some undesirable results such as an increase in residual particles between surface irregularities. There fore an optimum blasting time is of great importance. Increasing the blasting pr essure also provides a rougher surface, but in grit blasting of harder specimens the surface roughness decreases when the pressure reaches a certain limit. About the blasting angle, it was noticed that an angle of 45° results in less r esidual particles between the surface irregularities, in comparison to the angle of 90°. After grit-blasting, the specimens were plasma spray coated with 80% ZrO 2-20 % Y 2O 3 powder. The adhesive strength of the coating to the substrate was the n measured according to the DIN 50160 standard. The results show that for a certain base metal, the adhesive strength is directl y related to the surface roughness of the base material. Residual particles afte r grit-blasting the surface of the specimens can also have a strong deteriorati ng effect on adhesive strength. Finally, it was shown that the hardness of the b ase material had a direct effect on the adhesive strength of the sprayed coating s.
基金Projects(51634006,51575368)supported by the National Natural Science Foundation of ChinaProject(2017GZ0041)supported by Science and Technology Support Program of Sichuan Province,China。
文摘In the present work,TiAlN coatings were deposited on Ti(C,N)-based cermet substrates by physical vapor deposition method.Emphasis was focused on the influence of grain size of cermet substrates on the microstructure,growth behavior,mechanical properties,adhesion strength and wear behavior of the coatings.The results show that finer Ti(C,N)grain size leads to higher nucleation density and lower growth rate of coatings,indicating the crystallite size of the TiAlN coatings decreases with decreasing Ti(C,N)grain size.Nanoindentation tests show that the coatings deposited on cermets of the finest grain size exhibit the highest hardness(H),elastic modulus(E),H/E and H3/E2 of 34.5 GPa,433.2 GPa,0.080 and 0.22,respectively.The adhesion strength between coating and substrate is also enhanced with decreasing Ti(C,N)grain size by scratch test,which corresponds to the grain size and H/E and H3/E2 of the coating.Besides,the lower surface roughness and better mechanical properties of the coating deposited on finer grained cermet contribute to the better wear resistance of the coating.