期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Enhancing Cycle Life of Graphite‖LiFePO_(4)Batteries via Copper Substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)Cathode Prelithiation Additive
1
作者 Jian-Ming Zheng Jing-Wen Zhang Tian-Peng Jiao 《电化学(中英文)》 北大核心 2025年第2期17-27,共11页
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni... Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs. 展开更多
关键词 Li_(2)Ni_(1-x)Cu_(x)O_(2) Cathode prelithiation additive LiFePO_(4)battery Cycle life Grid energy storage
在线阅读 下载PDF
Boron-containing copolymers as environmentally friendly lubricant additives
2
作者 Hua Xue Fengchun Liang +4 位作者 Weili Yang Qun He Meirong Cai Feng Zhou Weifeng Bu 《日用化学工业(中英文)》 北大核心 2025年第1期1-11,共11页
Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubri... Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements. 展开更多
关键词 friction and wear reduction lubricant additives boron-containing copolymers POLYMERIZATION
在线阅读 下载PDF
A review of the experimental and numerical studies on the compression behavior of the additively produced metallic lattice structures at high and low strain rates
3
作者 Muhammad Arslan Bin Riaz Mustafa Guden 《Defence Technology(防务技术)》 2025年第7期1-49,共49页
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in... Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures. 展开更多
关键词 Metallic lattice structures additive manufacturing Strain rate sensitivity MICROSTRUCTURE Dynamic compression High strain rate loading MODELLING
在线阅读 下载PDF
Microstructure and mechanical properties of additively manufactu
4
作者 MA Pan YANG Hong +5 位作者 ZHANG Zhi-yu XIE Xiao-chang YANG Ping KONDA-GOKULDOSS Prashanth ZHANG Han JIA Yan-dong 《Journal of Central South University》 2025年第4期1167-1178,共12页
High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy allo... High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys. 展开更多
关键词 additive manufacturing selective laser melting high-entropy alloy composite high-entropy intermetallic powders aging treatment microstructure mechanical properties
在线阅读 下载PDF
Perspectives on additive manufacturing for warhead applications
5
作者 Hao Xue Qiang Zhou +1 位作者 Chuan Xiao Guangyan Huang 《Defence Technology(防务技术)》 2025年第1期225-251,共27页
According to different damage modes,warheads are roughly divided into three types:fragmentation warheads,shaped charge warheads,and penetrating warheads.Due to limitations in material and structural manufacturing,trad... According to different damage modes,warheads are roughly divided into three types:fragmentation warheads,shaped charge warheads,and penetrating warheads.Due to limitations in material and structural manufacturing,traditional manufacturing methods make it difficult to fully utilize the damage ability of the warhead.Additive manufacturing(AM)technology can fabricate complex structures,with classified materials composition and customized components,while achieving low cost,high accuracy,and rapid production of the parts.The maturity of AM technology has brought about a new round of revolution in the field of warheads.In this paper,we first review the principles,classifications,and characteristics of different AM technologies.The development trends of AM technologies are pointed out,including multi-material AM technology,hybrid AM technology,and smart AM technology.From our survey,PBF,DED,and EBM technologies are mainly used to manufacture warhead damage elements.FDM and DIW technologies are mainly used to manufacture warhead charges.Then,the research on the application of AM technology in three types of warhead and warhead charges was reviewed and the existing problems and progress of AM technologies in each warhead were analyzed.Finally,we summarized the typical applications and look forward to the application prospects of AM technology in the field of warheads. 展开更多
关键词 additive manufacturing Fragmentation warhead Shaped charge warhead Penetrating warhead Warhead charge
在线阅读 下载PDF
Erratum to:Evolution of microstructure and mechanical properties in multi-layer 316 L-TiC composite fabricated by selective laser melting additive manufacturing
6
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TAŞCI Elina AKBARZADEH 《Journal of Central South University》 2025年第2期691-691,共1页
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic... Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research. 展开更多
关键词 additive manufacturing microstructure mechanical properties fellowship program multi layer L TIC composite selective laser melting
在线阅读 下载PDF
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing
7
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Microstructure transformations and improving wear resistance of austenitic stainless steel additively fabricated by arc-based DED process
8
作者 Ashish Yadav Manu Srivastava +1 位作者 Prashant K.Jain Sandeep Rathee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期194-204,共11页
In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orienta... In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft. 展开更多
关键词 Metal additive deposition Defence applications Arc-based DED Characterization Wear behaviour FRACTOGRAPHY
在线阅读 下载PDF
Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy
9
作者 ZHANG Tao QIN Zhen-yang +2 位作者 GONG Hai WU Yun-xin CHEN Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2181-2193,共13页
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli... Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening. 展开更多
关键词 wire-arc additive manufacture inter-layer cold rolling thermal-mechanical treatment microstructure mechanical properties strengthening mechanism
在线阅读 下载PDF
Quasi-static and dynamic compressive behaviour of additively manufactured Menger fractal cube structures
10
作者 Damith Mohotti Dakshitha Weerasinghe +3 位作者 Madhusha Bogahawaththa Hongxu Wang Kasun Wijesooriya Paul JHazell 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期39-49,共11页
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi... This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers. 展开更多
关键词 additive manufacturing Fractal geometries Menger cube Energy absorption QUASI-STATIC
在线阅读 下载PDF
Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method
11
作者 Hao Xue Tao Wang +2 位作者 Xinyu Cui Yifan Wang Guangyan Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期1-17,共17页
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology... Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future. 展开更多
关键词 additive manufacturing Topology optimization Ballistic performance Projectile design
在线阅读 下载PDF
Sorbitol-Electrolyte-Additive Based Reversible Zinc Electrochemistry
12
作者 Qiong Sun Hai-Hui Du +5 位作者 Tian-Jjiang Sun Dian-Tao Li Min Cheng Jing Liang Hai-Xia Li Zhan-Liang Tao 《电化学(中英文)》 CAS 北大核心 2024年第7期28-37,共10页
The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi... The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries. 展开更多
关键词 Aqueous zinc ion batteries DENDRITE Sorbitol additive Solvation regulation Interface modulation
在线阅读 下载PDF
Residual stress and mechanical properties analysis of TC4 alloy fabricated by laser additive manufacturing
13
作者 ZHAO Hong-jian LIU Chen +4 位作者 HU Jie-xin YIN Shuai YANG Chao-wei LIU Chang-sheng ZHAN Yu 《Journal of Central South University》 CSCD 2024年第11期3983-3995,共13页
Large residual stresses would be generated in the laser additive manufactured(LAMed)structures after processing rapid and intense heating and cooling cycles with bad mechanical properties.Scholars have tried many meth... Large residual stresses would be generated in the laser additive manufactured(LAMed)structures after processing rapid and intense heating and cooling cycles with bad mechanical properties.Scholars have tried many methods to decrease the residual stress to prevent the structures from being broken and improve the mechanical properties.In this study,residual stress and mechanical properties of LAMed structures are analyzed,and the advanced measuring method,laser ultrasonic technique,is used to detect the residual stresses accumulated in the samples in time.The results show that when the solution temperature is less than T_(β)(992℃),the residual stress increases gradually with the increase of solution temperature,and when the temperature is more than T_(β)(992℃),Widmanstätten structure will significantly reduce the residual stress;the mechanical properties of the specimen decrease with the increase of the solution temperature,and the different cooling methods do not have much effect on the elastic properties of the specimen.Considering the residual stress and mechanical properties,the HT1 system used in this paper is the best.This study is of great significance for the reasonable suppression of residual stress and the regulation of mechanical properties of TC4 titanium alloy fabricated by laser additive manufacturing. 展开更多
关键词 laser additive manufacturing heat treatment residual stress mechanical properties
在线阅读 下载PDF
大蒜(Allium sativum L.)及大蒜素(Garlicin)作为添加剂(Additives)在水产养殖业中的应用 被引量:3
14
作者 王兴礼 徐大节 《现代渔业信息》 2003年第8期27-28,共2页
大蒜具有多种生物学功能。大蒜素是大蒜提取液中主要生物活性成分的总称。作者简要概述大蒜及大蒜素作为添加剂在水产养殖业中的应用。
关键词 大蒜 Allium-sativumL. 大蒜素 Garlicin 添加剂 additiveS 水产养殖业 应用 生物学功能
在线阅读 下载PDF
基于Additive Runge-Kutta方法的激波聚焦起爆高精度数值模拟 被引量:1
15
作者 王成 宋清官 《北京理工大学学报》 EI CAS CSCD 北大核心 2016年第2期137-143,共7页
基于详细氢氧化学动力学模型,建立了描述氢氧爆轰的多组分反应欧拉方程组.针对建立的反应欧拉方程组,数值方法上采用3阶Additive Runge-Kutta方法对时间项进行积分,采用5阶精度的加权本质无振荡(WENO)格式对空间对流项进行离散,自主研... 基于详细氢氧化学动力学模型,建立了描述氢氧爆轰的多组分反应欧拉方程组.针对建立的反应欧拉方程组,数值方法上采用3阶Additive Runge-Kutta方法对时间项进行积分,采用5阶精度的加权本质无振荡(WENO)格式对空间对流项进行离散,自主研发了大规模高精度计算程序.该程序能够处理化学反应源项引起的刚性问题,且能节省计算时间和计算内存.对半球型、半椭球型、圆锥型3种结构形式凹面腔内的激波聚焦起爆过程进行了数值模拟,数值模拟研究得到了不同结构形式凹面腔内的激波聚焦起爆过程. 展开更多
关键词 详细化学动力学模型 additive RUNGE-KUTTA方法 WENO格式 激波聚焦
在线阅读 下载PDF
Hall-Petch relationship in selective laser melting additively manufactured metals:using grain or cell size? 被引量:23
16
作者 WANG Yin WANG Yue-ting +4 位作者 LI Rui-di NIU Peng-da WANG Min-bo YUAN Tie-chui LI Kun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1043-1057,共15页
The mechanical properties of many materials prepared by additive manufacturing technology have been greatly improved.High strength is attributed to grain refinement,formation of high density dislocation and existence ... The mechanical properties of many materials prepared by additive manufacturing technology have been greatly improved.High strength is attributed to grain refinement,formation of high density dislocation and existence of cellular structures with nanoscale during manufacturing.In addition,the super-saturated solid solution of elements in the matrix and the solid solution segregation along the wall of the cellular structures also promote the improvement of strength by enhancing dislocation pinning.Hence,the existence of cellular structure in grains leads to differences in the prediction of material strength by Hall-Petch relationship,and there is no unified calculation method to determine the d value as grain size or cell size.In this work,representative materials including austenite 316L SS were printed by selective laser melting(SLM),and the strength was predicted.The values of cell size and grain size were substituted into Hall-Petch formula,and the results showed that the calculation error for 316L is increased from 4.1%to 11.9%.Therefore,it is concluded that the strength predicted by grain size is more accurate than that predicted by cell size in additive manufacturing materials.When calculating the yield strength of laser additive manufacturing metal materials through the Hall-Petch formula,the grain size should be used as the basis for calculation. 展开更多
关键词 additive manufacturing Hall-Petch relationship grains cellular structures mechanical property
在线阅读 下载PDF
METHANE STORAGE VIA HYDRATE FORMATION USING CALCIUM HYPOCHLORITE AS ADDITIVE 被引量:12
17
作者 郭彦坤 樊栓狮 +2 位作者 郭开华 石磊 陈勇 《化工学报》 EI CAS CSCD 北大核心 2002年第5期452-453,共2页
关键词 GAS STORAGE HYDRATE CALCIUM HYPOCHLORITE additive
在线阅读 下载PDF
Influence of flux additives on iron ore oxidized pellets 被引量:22
18
作者 范晓慧 甘敏 +2 位作者 姜涛 袁礼顺 陈许玲 《Journal of Central South University》 SCIE EI CAS 2010年第4期732-737,共6页
Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t... Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO. 展开更多
关键词 iron ore additiveS oxidized pellets compressive strength
在线阅读 下载PDF
Effects of MgO additive on metallurgical properties of fluxed-pellet 被引量:9
19
作者 GUO He SHEN Feng-man +2 位作者 JIANG Xin GAO Qiang-jian DING Guan-gen 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3238-3251,共14页
As a main charging burden of blast furnace(BF)ironmaking process,pellets play an important role in ironmaking process.However,compared with sinters,there are some inevitable disadvantages for traditional acid pellets,... As a main charging burden of blast furnace(BF)ironmaking process,pellets play an important role in ironmaking process.However,compared with sinters,there are some inevitable disadvantages for traditional acid pellets,e.g.,reduction swell,low melting temperature.Therefore,the fluxed-pellets have been applied in BF,especially MgO-fluxed pellets.In the present study,the effects of category and content of MgO bearing additive on the compressive strength(CS),reduction swelling index(RSI),reduction disintegration index(RDI)and melting-dripping properties of the pellets were investigated.Minerals composition,pore distribution and microstructure of MgO-flux pellets were studied by X-ray powder diffraction(XRD),mercury intrusion method and scanning electron microscopy(SEM),respectively.The results show that the light burned magnesite(LBM)is more suitable MgO bearing additive for fluxed-pellets.With increasing LBM content from 0 to 2.0%,the CS decreases from 3066 to 2689 N,RSI decreases from 16.43%to 9.97%and RDI decreases from 19.2%to 12.99%.The most appropriate MgO bearing additive content in the fluxed-pellets is 2.0%according to principal component analysis(PCA). 展开更多
关键词 PELLETS MgO bearing additive porosity SWELLING IRONMAKING principal component analysis
在线阅读 下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:14
20
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部