期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
基于AIGC技术的民族服饰设计研究——以畲族为例 被引量:8
1
作者 吴海鸣 陈敬玉 《丝绸》 CAS 北大核心 2025年第1期20-29,共10页
民族服饰的当代创新需要在创作过程中寻求民族传统与现代审美的最佳平衡点,生成式人工智能(AIGC)技术的出现为民族服饰的当代设计应用提供了新的路径和方法。文章通过分析目前人工智能技术在民族服饰生成过程中遇到的问题,提出基于专属... 民族服饰的当代创新需要在创作过程中寻求民族传统与现代审美的最佳平衡点,生成式人工智能(AIGC)技术的出现为民族服饰的当代设计应用提供了新的路径和方法。文章通过分析目前人工智能技术在民族服饰生成过程中遇到的问题,提出基于专属资源库模型训练的方法并以畲族服饰为例进行实验。实验表明,通过对畲族资源库中的服饰样本进行品类归纳和图像标注进行专属模型的训练,可以使被训练的模型理解、学习到资源库样本中畲族服饰的特征,进而使生成的内容具有畲族服饰风格的图像。通过这一实验,展示了人工智能技术给民族服饰创新设计带来的全新思路和方法,旨在建立一条民族服饰设计与AIGC技术相结合的创新实践路径,通过AIGC技术能促进民族服饰设计的创新性发展和创造性转化。 展开更多
关键词 AIGC 民族服饰 辅助设计 畲族 Stable Diffusion Low-Rank Adaptation CHECKPOINTS
在线阅读 下载PDF
大语言模型微调方法研究综述 被引量:5
2
作者 吴春志 赵玉龙 +3 位作者 刘鑫 司念文 张鲁飞 范昊 《中文信息学报》 北大核心 2025年第2期1-26,共26页
近年来,大语言模型成为人工智能领域非常受关注的技术,引发了自然语言处理领域新的研究范式。在大语言模型训练实践中,参数微调是其中非常重要的一个环节,它允许用户在资源受限条件下,通过调整少部分参数来提升模型理解用户指令、解决... 近年来,大语言模型成为人工智能领域非常受关注的技术,引发了自然语言处理领域新的研究范式。在大语言模型训练实践中,参数微调是其中非常重要的一个环节,它允许用户在资源受限条件下,通过调整少部分参数来提升模型理解用户指令、解决下游任务的能力。该文全面回顾了2019—2024年间50余种主要的大语言模型微调方法,从全新的角度进行了系统性的整理和概括,分为全参数微调、部分参数微调、新增参数微调和无参数微调方法,对每种方法的原理、微调位置及方法特点作了总结归纳和比较;接着,从计算的视角出发,着重分析比较了各类方法的参数量、内存消耗和计算量;最后,基于该文的微调方法调研及相关的参数微调实践,对大语言模型微调策略给出建议,以促进该领域的发展。 展开更多
关键词 人工智能 大语言模型 微调 ADAPTER LoRA
在线阅读 下载PDF
背景图增强的社交网络重要节点自适应排序算法
3
作者 冯俊又 陈李舟 +2 位作者 刘先博 徐煊翔 杜彦辉 《计算机应用研究》 北大核心 2025年第3期742-748,共7页
社交网络中的重要节点对网络结构和功能具有决定性影响,开发精度更高的重要节点排序算法成为当前的研究热点之一。其中,LR(LeaderRank)引入一个背景节点明显提升了经典PageRank排序算法的性能,但仍面临着网络中小出度用户的投票权偏见... 社交网络中的重要节点对网络结构和功能具有决定性影响,开发精度更高的重要节点排序算法成为当前的研究热点之一。其中,LR(LeaderRank)引入一个背景节点明显提升了经典PageRank排序算法的性能,但仍面临着网络中小出度用户的投票权偏见问题。因此,提出背景图增强的社交网络重要节点自适应排序算法AGR(adaptive GraphRank),构建多节点背景图替代LR的单一背景节点,基于H指数设计有偏向的随机游走,缓解投票权偏见。调参实验初步确定了背景图的最优规模和结构;与K-TOPSIS等现有优秀算法进行对比实验,验证了AGR在传播、瓦解、鲁棒性三个关键维度上的性能提升;实际案例检验了算法在真实场景下的有效性。综上,AGR有效缓解了投票权偏见,提高了排序精度,展示出较优的性能和应用潜力。 展开更多
关键词 重要节点 LeaderRank adaptive GraphRank 背景图 H指数
在线阅读 下载PDF
四川大学大模型底层系统方向研究论文在VLDB 2025发表
4
《信息网络安全》 北大核心 2025年第9期1475-1475,共1页
四川大学计算机学院学生团队在大规模语言模型参数高效微调系统研究方向取得重要进展,其研究成果“mLoRA:Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs”在国际数据库学术会议VLDB 2025 Rese... 四川大学计算机学院学生团队在大规模语言模型参数高效微调系统研究方向取得重要进展,其研究成果“mLoRA:Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs”在国际数据库学术会议VLDB 2025 Research Track正式发表。VLDB(International Conference on Very Large Data Bases)是数据库领域的重要国际学术会议之一,涵盖数据库管理系统、数据密集型系统与大规模数据处理等方向。该工作已在多个国内外互联网企业的实际生产环境中部署应用,并获得一项中国发明专利和一项美国发明专利的受理。 展开更多
关键词 LoRA Adapters Fine-Tuning mLoRA Pipeline Parallelism
在线阅读 下载PDF
Equilibrium Strategies in M/M/1 Retrial Queues with Variable Service Rate
5
作者 LIU Yuanyuan YAN Zhaozeng YANG Qin 《应用概率统计》 北大核心 2025年第3期448-466,共19页
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen... We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples. 展开更多
关键词 variable service rate retrial queues real-time adaptability equilibrium strategies ALGORITHM
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
6
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
7
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
8
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Research on the navigation method of high speed differential rotation guided ammunition with ballistic assistance prediction under GNSS denial
9
作者 Ning Liu Kejun Hu +5 位作者 Bin Hu Haorui Li Kai Shen Wenhao Qi Junfang Fan Zhong Su 《Defence Technology(防务技术)》 2025年第7期275-289,共15页
In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differ... In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss. 展开更多
关键词 GNSS refusal Ballistic assistance Guided ammunition Adaptive kalman filter Covariance of innovation sequence
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
10
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
A sparse moving array imaging approach for FMCW radar with dualaperture adaptive azimuth ambiguity suppression and adaptive QR decomposition
11
作者 Yanwen Han Xiaopeng Yan +3 位作者 Jiawei Wang Sheng Zheng Hongrui Yu Jian Dai 《Defence Technology(防务技术)》 2025年第8期254-271,共18页
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy... Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB. 展开更多
关键词 Frequency modulated continuous wave (FMCW) Sparse motion array Range-azimuth imaging Azimuth ambiguity suppression DAAP Adaptive QR decomposition
在线阅读 下载PDF
A tracking algorithm based on adaptive Kalman filter with carrier-to-noise ratio estimation under solar radio bursts interference
12
作者 ZHU Xuefen LI Ang +2 位作者 LUO Yimei LIN Mengying TU Gangyi 《Journal of Systems Engineering and Electronics》 2025年第4期880-891,共12页
Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers... Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance. 展开更多
关键词 solar radio burst(SRB) global positioning system(GPS) adaptive Kalman filter(AKF) tracking algorithm.
在线阅读 下载PDF
Aerial-ground collaborative delivery route planning with UAV energy function and multi-delivery
13
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第2期446-461,共16页
With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the ve... With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis. 展开更多
关键词 aerial-ground collaborative delivery(AGCD) route planning unmanned aerial vehicle(UAV)energy function UAV multi-delivery micro-evolution adaptive large neighborhood search.
在线阅读 下载PDF
Two-phase heuristic for vehicle routing problem with drones in multi-trip and multi-drop mode
14
作者 MA Huawei HU Xiaoxuan ZHU Waiming 《Journal of Systems Engineering and Electronics》 2025年第4期1024-1036,共13页
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult... As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm. 展开更多
关键词 vehicle routing problem with drones(VRPD) mixed integer program parallel route construction heuristic(PRCH) adaptive neighbor searching heuristic(ANSH).
在线阅读 下载PDF
Vehicle and onboard UAV collaborative delivery route planning:considering energy function with wind and payload
15
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第1期194-208,共15页
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove... The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted. 展开更多
关键词 vehicle and onboard unmanned aerial vehicle(UAV)collaborative delivery energy consumption function route planning mixed integer linear programming model adaptive large neighborhood search(ALNS)algorithm
在线阅读 下载PDF
adaptive LASSO logistic回归模型应用于老年人养老意愿影响因素研究的探讨 被引量:24
16
作者 韩耀风 覃文峰 +3 位作者 陈炜 李博涵 滕伯刚 方亚 《中国卫生统计》 CSCD 北大核心 2017年第1期18-22,共5页
目的探讨adaptive LASSO logistic回归模型在老年人养老意愿影响因素研究中的应用。方法基于厦门市60岁及以上老年人口的多阶段整群抽样调查数据,建立老年人养老意愿影响因素的adaptive LASSO logistic回归模型,通过交叉验证法选择模型... 目的探讨adaptive LASSO logistic回归模型在老年人养老意愿影响因素研究中的应用。方法基于厦门市60岁及以上老年人口的多阶段整群抽样调查数据,建立老年人养老意愿影响因素的adaptive LASSO logistic回归模型,通过交叉验证法选择模型中的调和参数λ;通过与全变量和逐步logistic回归结果的比较,探讨adaptive LASSO logistic回归模型的优势。结果共纳入1244名老年人,其养老意愿为家庭养老、社区居家养老和机构养老的比例分别为70.0%、21.1%和8.9%。交叉验证法选择的λ为0.018;此时adaptive LASSO logistic回归模型纳入的自变量为居住地、年龄、婚姻状况、文化程度、子女数、每月退休金收入、公费医疗和住院情况;BIC和AIC分别为1931、1888,均低于全变量logistic回归(2077、1923)和逐步logistic回归(2025、1912)。结论 adaptive LASSO logistic回归模型可用于老年人养老意愿影响因素研究。老年人的养老意愿受多个因素影响。 展开更多
关键词 ADAPTIVE LASSO LOGISTIC回归模型 养老模式 影响因素
在线阅读 下载PDF
提升型贝叶斯分类器在电力系统暂态稳定评估中的应用 被引量:17
17
作者 卢锦玲 朱永利 +1 位作者 赵洪山 刘艳 《电工技术学报》 EI CSCD 北大核心 2009年第5期177-182,共6页
应用人工智能技术可实现电力系统暂态稳定的快速评估,朴素贝叶斯分类器作为人工智能方法的一种,其训练计算复杂度是线性的,是解决分类问题最实用、有效的方法之一,但由于它是建立在属性变量相对类变量独立的假设前提下,故存在一定的误... 应用人工智能技术可实现电力系统暂态稳定的快速评估,朴素贝叶斯分类器作为人工智能方法的一种,其训练计算复杂度是线性的,是解决分类问题最实用、有效的方法之一,但由于它是建立在属性变量相对类变量独立的假设前提下,故存在一定的误分类率。本文采用Adaptive Boost(AdaBoost)算法对朴素贝叶斯分类器进行提升,有效地降低了误分类率,并将提升型贝叶斯分类器用于电力系统暂态稳定评估。选取能迅速反映电力系统暂态过程的特征量,作为贝叶斯分类器的属性变量,将系统稳定或不稳定作为类变量,采用数值仿真算法产生大量样本,并对属性的连续数据进行离散化处理,构造了用于暂态稳定评估的提升型贝叶斯分类器。对新英格兰10机39节点系统进行仿真,结果表明:提升型贝叶斯分类器用于电力系统暂态稳定评估可有效降低机器学习的复杂度和提高暂态稳定的分类精度。 展开更多
关键词 贝叶斯分类器 暂态稳定评估 数据离散化 ADAPTIVE Boost算法
在线阅读 下载PDF
基于Adaptive Lasso及RF算法的冰雪天气交通事故分析 被引量:21
18
作者 赵玮 徐良杰 +2 位作者 冉斌 汪济洲 张璇 《中国安全科学学报》 CAS CSCD 北大核心 2017年第2期98-103,共6页
为分析冰雪天气下高速公路交通事故频发致因,量化分析驾驶环境、驾驶员及车辆情况对事故的影响,根据Adaptive Lasso和随机森林(RF)混合算法建立预测模型。以10年约30万组冰雪环境下高速公路交通事故数据为例,训练改进预测模型验证其准... 为分析冰雪天气下高速公路交通事故频发致因,量化分析驾驶环境、驾驶员及车辆情况对事故的影响,根据Adaptive Lasso和随机森林(RF)混合算法建立预测模型。以10年约30万组冰雪环境下高速公路交通事故数据为例,训练改进预测模型验证其准确性。结果表明,混合算法的准确度和拟合程度都优于支持向量机(SVM)、分类回归树(CART)及RF等单独算法。交通事故与环境因素相关性最显著,坡路、弯道及交叉口处事故受冰雪环境影响较大;事故与驾驶员因素中部分因素显著相关,如驾驶员性别及安全带使用情况;本地驾驶员对驾驶能力及冰雪环境的估计错误更易导致交通事故。 展开更多
关键词 高速公路 交通事故 ADAPTIVE Lasso 随机森林(RF) 冰雪天气 大数据分析
在线阅读 下载PDF
一种抑制严重非均匀杂波的机载MIMO-STAP方法 被引量:12
19
作者 李彩彩 廖桂生 +1 位作者 朱圣棋 吴孙勇 《电子学报》 EI CAS CSCD 北大核心 2011年第3期511-517,共7页
在机载MIMO雷达体制下,针对严重非均匀环境(包括斜视阵和前视阵近程段),提出了一种新的基于时域平滑的两级级联降维STAP方法,先后对杂波和孤立干扰进行抑制.第一级对少量独立同分布(IID)辅助样本进行平滑,用得到的所有样本估计杂波特性... 在机载MIMO雷达体制下,针对严重非均匀环境(包括斜视阵和前视阵近程段),提出了一种新的基于时域平滑的两级级联降维STAP方法,先后对杂波和孤立干扰进行抑制.第一级对少量独立同分布(IID)辅助样本进行平滑,用得到的所有样本估计杂波特性并用先时后空自适应级联处理器(称为mDT-SAP)中的3DT-SAP(简称3DT)方法进行抑制,第二级用待检测距离单元数据进行平滑估计孤立干扰特性并用3DT方法进行抑制.该方法克服了直接数据域(DDD)方法空时孔径损失大,误差鲁棒性差及没有充分利用统计信息的缺点,具有良好的性能.计算机仿真实验验证了其有效性和优越性. 展开更多
关键词 STAP(Space-Time Adaptive Processing) MIMO(Multiple Input MULTIPLE Output)雷达 非均匀杂波
在线阅读 下载PDF
Java事件处理机制中设计模式的分析 被引量:5
20
作者 宋淼 袁兆山 +1 位作者 陈刚 刘奎 《合肥工业大学学报(自然科学版)》 CAS CSCD 2004年第11期1383-1386,共4页
设计模式是具有良好扩展性、健壮性及重用性的软件设计方案,是软件技术的重要研究课题。Java是一门跨平台的语言,适用于开发客户机/服务器式的应用程序。由于Java的跨平台性,使它也适合大型的多主机系统软件开发;同时Java也是一种面向... 设计模式是具有良好扩展性、健壮性及重用性的软件设计方案,是软件技术的重要研究课题。Java是一门跨平台的语言,适用于开发客户机/服务器式的应用程序。由于Java的跨平台性,使它也适合大型的多主机系统软件开发;同时Java也是一种面向对象的语言,在其中体现了许多设计模式的思想。文章介绍了设计模式的概念及Java事件处理机制,并通过对JavaAWT类库的详细分析,从Java的事件处理机制中提取出3种主要的设计模式。 展开更多
关键词 OBSERVER模式 COMMAND模式 DEFAULT ADAPTER模式 事件监听器
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部