期刊文献+
共找到1,807篇文章
< 1 2 91 >
每页显示 20 50 100
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:21
1
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
在线阅读 下载PDF
Hybrid particle swarm optimization with differential evolution and chaotic local search to solve reliability-redundancy allocation problems 被引量:5
2
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2013年第6期1572-1581,共10页
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti... In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems. 展开更多
关键词 particle swarm optimization differential evolution chaotic local search reliability-redundancy allocation
在线阅读 下载PDF
Energy transmission modes based on Tabu search and particle swarm hybrid optimization algorithm 被引量:2
3
作者 李翔 崔吉峰 +1 位作者 乞建勋 杨尚东 《Journal of Central South University of Technology》 EI 2007年第1期144-148,共5页
In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation mo... In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency was established, and then, a new Tabu search and particle swarm hybrid optimizing algorithm was proposed to find solutions. While actual data of energy demand and distribution in China were selected for analysis, the economic critical value in comparison between the long-distance coal transfer and electric power transmission was gained. Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methods that are based on regional price differences, freight rates and annual cost with the proposed method, the result indicates that the economic efficiency of the energy transfer can be enhanced by 3.14%, 5.78% and 6.01%, respectively. 展开更多
关键词 ultra high voltage(UHV) economical efficiency Tabu search particle swarm optimization
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
4
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
5
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Reliability analysis of earth slopes using hybrid chaotic particle swarm optimization 被引量:7
6
作者 M.Khajehzadeh M.R.Taha A.El-Shafie 《Journal of Central South University》 SCIE EI CAS 2011年第5期1626-1637,共12页
A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The fac... A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes. 展开更多
关键词 reliability analysis stability assessment earth slopes particle swarm optimization harmony search
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
7
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
8
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Stochastic focusing search:a novel optimization algorithm for real-parameter optimization 被引量:3
9
作者 Zheng Yongkang Chen Weirong +1 位作者 Dai Chaohua Wang Weibo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期869-876,共8页
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu... A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems. 展开更多
关键词 swarm intelligence stochastic focusing search real-parameter optimization human randomized searching particle swarm optimization.
在线阅读 下载PDF
快速综合学习粒子群优化算法 被引量:3
10
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子群优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
采用动态种群策略的多目标粒子群优化算法 被引量:1
11
作者 杜睿山 井远光 +3 位作者 付晓飞 孟令东 张豪鹏 王紫珊 《吉林大学学报(理学版)》 北大核心 2025年第3期845-854,共10页
针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局... 针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局部搜索能力,提高算法的多样性;另一方面,为防止种群规模过度增长,利用非支配排序和种群密度控制种群规模,以加快算法搜索进度,避免过早收敛.选取5种对比算法在测试函数上进行实验,实验结果表明,该算法具有明显的多样性和收敛性优势. 展开更多
关键词 动态种群 粒子群优化 多目标优化 多样性 收敛性
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
12
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
低空遥感与地面传感网络双采集中的数据融合 被引量:1
13
作者 廖世芳 刘长星 包富华 《传感技术学报》 北大核心 2025年第5期900-905,共6页
针对因低空遥感与地面传感网络双采集中数据特征间差异性较强、存在噪声影响,导致数据融合难度大的问题,提出一种低空遥感与地面传感网络双采集中的数据融合方法。采用SLIC算法设定融合区域标准阈值,融合低空遥感与地面传感网络双采集... 针对因低空遥感与地面传感网络双采集中数据特征间差异性较强、存在噪声影响,导致数据融合难度大的问题,提出一种低空遥感与地面传感网络双采集中的数据融合方法。采用SLIC算法设定融合区域标准阈值,融合低空遥感与地面传感网络双采集同属性数据,采集同属性数据集中所有极小值点和极大值点,建立拟合曲线并计算数据点在曲线上的幅值,将幅值较高的数据点视为噪声点,并对其进行去噪处理,不断迭代该过程,直到均匀曲线中的所有噪声点被处理完。分析去噪后数据的一维和二维信息熵值,提取不同维度的特征参数,利用这些特征参数进行数据的趋同性和趋异性融合。仿真数据证明,所提方法数据融合精准度高,能耗始终在0.3 J以下,具有一定应用价值。 展开更多
关键词 地面传感网络 数据融合 信息熵 低空遥感 粒子群搜索算法 欧氏距离
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
14
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于SSAPSO-PID的白胡椒熟化温度控制系统设计与试验
15
作者 俞国燕 张嘉伟 +3 位作者 张园 韦丽娇 赵振华 沈德战 《农业机械学报》 北大核心 2025年第5期589-596,共8页
为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,... 为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,通过控制算法调节蒸汽流量以确保稳定控制。采用开环阶跃响应法建立并拟合了熟化机内温度与时间的数学模型,通过Simulink仿真试验对比了Ziegler-Nichols整定法、临界比例度法、衰减曲线法以及基于麻雀搜索算法的粒子群优化自整定法(SSAPSO)性能。最终确定PID最佳控制参数为比例系数K_(p)=0.8759,积分系数K_(i)=0.02,微分系数K_(d)=4.3255。系统试验结果表明,在8 min的熟化过程中,每隔1 min采集当前熟化温度,由于熟化机与空气直接对流换热,其温度稳定在(99±1.5)℃范围内,熟化温度平均相对误差小于1.2%、变异系数小于1.3%,基本实现了熟化过程中自动化精准高效控温的目的。 展开更多
关键词 白胡椒初加工生产线 熟化温度 粒子群优化算法 麻雀搜索算法 PID控制
在线阅读 下载PDF
聚类和群智能优化算法的自动剪枝方法
16
作者 刘洲峰 吴文涛 +2 位作者 李环宇 邵昕楠 李春雷 《计算机工程与应用》 北大核心 2025年第11期204-215,共12页
近年来,网络剪枝技术作为一种极为有效的卷积神经网络压缩方案,得到了迅猛的发展,其中通道剪枝得益于其硬件友好性,有着尤为明显的优势。然而,当前主流方法集中于通过通道重要性评估或人工干预来实现剪枝,低效且容易导致次优结果;同时... 近年来,网络剪枝技术作为一种极为有效的卷积神经网络压缩方案,得到了迅猛的发展,其中通道剪枝得益于其硬件友好性,有着尤为明显的优势。然而,当前主流方法集中于通过通道重要性评估或人工干预来实现剪枝,低效且容易导致次优结果;同时一些基于搜索算法的自动化剪枝方法则难以控制搜索空间与搜索效率之间的平衡。为了解决这些问题,提出了一种基于聚类与群智能优化算法的自动通道剪枝方法。具体来说,根据特征图的相似度利用K-Mediod算法进行逐层的通道聚类,并通过灵敏度分析找到当前最优剪枝率,从而形成初步的压缩模型,引入粒子群算法(PSO)对其进行迭代搜索并找到最优剪枝网络结构。对剪枝网络进行微调,以降低精度损失。在CIFAR-10、ILSVRC-2012上对几种最为常用的CNN模型进行了评估,与近年来的主流方法相比实验结果有所提升,证明了剪枝后网络的有效性,在ILSVRC-2012中,在ResNet-50达到45.5%剪枝率的前提下,模型准确度只降低了0.23个百分点。 展开更多
关键词 卷积神经网络 模型压缩 网络剪枝 网络结构搜索 粒子群算法
在线阅读 下载PDF
K9玻璃磁流变抛光材料去除效率的动态预测与工艺优化
17
作者 卢明明 刘宇强 +2 位作者 林洁琼 杨亚坤 孙少毅 《机械科学与技术》 北大核心 2025年第1期59-66,共8页
该研究旨在精确预测磁流变抛光K9玻璃加工过程中的材料去除率,并找到最佳工艺参数组合。采用了响应面法(RSM)与粒子群优化算法(PSO)相结合的方法建立了材料去除率预测模型,并进行了最优工艺参数的搜索。首先,利用响应面法构建了动态预... 该研究旨在精确预测磁流变抛光K9玻璃加工过程中的材料去除率,并找到最佳工艺参数组合。采用了响应面法(RSM)与粒子群优化算法(PSO)相结合的方法建立了材料去除率预测模型,并进行了最优工艺参数的搜索。首先,利用响应面法构建了动态预测模型,将工件转速、偏摆速度和工作间隙作为输入,K9玻璃的材料去除率作为输出,并研究了工艺参数与材料去除率之间的交互影响。随后,利用粒子群优化算法进行全局寻优,并通过实验验证了最优工艺参数。结果表明:构建的动态预测模型具有高精度,相关系数R^(2)=0.9887,调整决定系数R_(adj)^(2)=0.9388。各工艺参数与材料去除率均存在交互作用,但工件转速与工作间隙的交互作用影响最小。粒子群优化算法寻优得到的最佳工艺参数组合为:工件转速600 r/min、偏摆速度102 mm/min、工作间隙2.5 mm。预测的K9玻璃的材料去除率为0.739μm/min,实际为0.719μm/min,误差仅为2.8%。该研究为磁流变抛光K9玻璃的材料去除效率动态预测及工艺参数优化提供了一定的指导意义。 展开更多
关键词 K9 磁流变抛光 响应曲面法 粒子群优化算法 材料去除率 动态预测
在线阅读 下载PDF
基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法
18
作者 徐辉 张顺香 《传感技术学报》 北大核心 2025年第9期1698-1703,共6页
无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群... 无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群算法将定位误差最小问题转化为粒子的全局寻优问题,得到的最优粒子位置即为丢包节点位置;基于邻域搜索策略缩小粒子搜索空间,提高粒子群算法全局寻优能力,实现无线传感网络丢包节点定位。仿真结果表明,该方法的丢包节点定位误报率平均值为0.45%,15个丢包节点的定位中仅有1个节点的定位结果与真实坐标存在较小偏差,邻域搜索策略应用后在第20次迭代后适应度函数值迅速降低至0.2,保证了无线传感网络通信质量。 展开更多
关键词 无线传感网络 丢包节点定位 邻域搜索 粒子群算法 DV-HOP算法
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
19
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
20
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部