期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal noise reduction empirical mode decomposition(EMD) ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
2
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
3
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于ICEEMDAN-CNN的斜拉桥损伤识别方法研究
4
作者 刘杰 耿亚飞 +1 位作者 杨俊 王麒麟 《石家庄铁道大学学报(自然科学版)》 2025年第2期23-29,共7页
针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验... 针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验模态分解(CEEMDAN)的基础上,依据标准差特性推算合适的噪声源进行迭代更新,动态调整海量数据中的噪声水平并分解得到本征模态函数(IMF)分量;随后对IMF分量逐个进行最小二乘法非线性拟合,计算各个分量的Hurst指数用以筛选最佳IMF分量,为1D-CNN提供高质量的数据输入;细化调整卷积层结构与参数优化1D-CNN,提高模型对海量数据的泛化能力与计算效率,经训练后得到斜拉桥损伤识别模型;利用斜拉桥基准有限元模型提取多种工况数据,对斜拉桥损伤识别模型进行仿真分析。结果表明,ICEEMDAN-CNN模型在仿真分析时损伤定位精度为99.84%,损伤定量的最大误差为2.94%。 展开更多
关键词 斜拉桥 损伤识别方法 海量数据 一维卷积神经网络 改进完全自适应噪声集合经验模态分解
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
5
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
6
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
7
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于CEEMDAN的矿山微震信号特征提取和分类方法
8
作者 赵云锋 陈林林 +3 位作者 罗忠浩 蒲源源 尚雪义 黄文祥 《矿业安全与环保》 北大核心 2025年第2期105-112,120,共9页
为获得有效的灾害前兆信息,微震事件分类是必要前提。针对岩体破裂信号与爆破振动信号自动识别准确率低的问题,提出了基于自适应噪声集合经验模态分解(CEEMDAN)的矿山微震信号特征提取及分类方法:采用CEEMDAN求取微震信号的多阶本征模态... 为获得有效的灾害前兆信息,微震事件分类是必要前提。针对岩体破裂信号与爆破振动信号自动识别准确率低的问题,提出了基于自适应噪声集合经验模态分解(CEEMDAN)的矿山微震信号特征提取及分类方法:采用CEEMDAN求取微震信号的多阶本征模态(IMF)分量,借助相关性系数筛选主分量,计算各主分量的方差贡献率和能量谱系数,以此作为分类学习的特征向量;利用鲸鱼算法(WOA)优化的卷积长短时记忆神经网络(WOA-CNN-LSTM)对岩体破裂和爆破振动信号进行分类。结果表明:CEEMDAN的主分量为PC1~PC8,随着分解层数的增加,岩体破裂信号的方差贡献率和能量谱系数平均值先增后减,而爆破振动信号呈下降趋势;与相关系数、方差贡献率相比,将特征向量能量谱系数作为WOA-CNN-LSTM、支持向量机(SVM)、BP神经网络3种方法的输入,分类准确率最高;WOA-CNN-LSTM的识别效果明显优于Bayes判别法、SVM和BP神经网络,且基于主分量能量谱系数的分类准确率达到了91.50%。 展开更多
关键词 微震信号分类 自适应噪声集合经验模态分解 鲸鱼算法 卷积长短时记忆神经网络
在线阅读 下载PDF
基于遥感数据的河谷地区气候水文变化特征及区域差异--以宝鸡地区为例
9
作者 刘引鸽 罗紫薇 +3 位作者 郭慧君 李丹丹 林茂琦 吕欣怡 《水土保持研究》 北大核心 2025年第1期181-194,共14页
[目的]探究不同分区气候水文多要素变化特征,为该地水资源管理及可持续开发利用提供区域性的科学依据。[方法]基于1950-2021年的卫星遥感数据,选取宝鸡地区9个县区的气温、地表温度、降水量、蒸发量、低层云量、总云量、紫外强度、相对... [目的]探究不同分区气候水文多要素变化特征,为该地水资源管理及可持续开发利用提供区域性的科学依据。[方法]基于1950-2021年的卫星遥感数据,选取宝鸡地区9个县区的气温、地表温度、降水量、蒸发量、低层云量、总云量、紫外强度、相对湿度、径流、地表径流和地下径流11种要素,采用自适应噪声经验模态分解法(CEEMDAN)和重标极差R/S分析方法,分析了近70年该区域多气象水文要素时空特征及区域差异,探讨了不同分区气候水文要素变化的延续性及未来趋势。[结果](1)区域仅年气温和地温呈上升趋势,其余要素的年均趋势均呈下降趋势,各要素趋势率分别为0.27℃/10 a,0.25℃/10 a,-40.97 mm/10 a,-0.59 mm/10 a,-1.14%/10 a,-0.17%/10 a,-4060.4 J/(m^(2)·10 a),-0.99%/10 a,-3.6 mm/10 a,-1.61 mm/10 a和-1.94 mm/10 a。季节变化上,冬季气温和地温上升趋势最大,夏季降水减少幅度最大,紫外强度仅在春季表现为上升趋势,春季相对湿度减小最大,低层云量春季减小最大,径流和地表径流夏季的下降趋势最大,地下径流秋季的下降趋势最大。千陇丘陵区各要素的变率都较大;(2)空间上,年气温、地温、蒸发量和紫外强度的高值多分布于千陇丘陵区和渭河川塬区,年降水量、低层云量、总云量、相对湿度、径流、地表径流和地下径流的高值区多分布在秦岭关山区。除凤县和眉县的蒸发量外,其他要素在各县区的升降趋势均与其在整个地区的趋势一致;(3)各气象水文要素具有2~3 a,4~5 a,7~9 a,11~13 a,19~35 a为主的年代际振荡周期;(4)未来宝鸡地区各气象水文要素均延续历史的上升或下降趋势,但延续时长不同,其中千陇丘陵区、渭河川塬区和秦岭关山区均存在最长延续时长10 a和最短延续时长4 a。[结论]宝鸡地区气候整体朝暖干化方向发展,各分区气候水文变化具有明显差异,且均存在明显振荡周期和正持续特征。 展开更多
关键词 气象水文要素 时空变化 自适应噪声分解法 重标极差分析法 遥感数据
在线阅读 下载PDF
基于Transformer和ARMA双数据驱动模型的抽水蓄能机组劣化趋势集成预测
10
作者 钟子威 祝令凯 +3 位作者 郭俊山 郑威 巩志强 商攀峰 《水电能源科学》 北大核心 2025年第3期191-195,共5页
为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根... 为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根据分解所得分量的不同时间尺度特性,利用Transformer模型对非线性分量进行预测,利用ARMA模型对线性分量进行预测,最后将预测值叠加得到最终预测结果。利用某抽水蓄能机组监测数据进行试验,结果表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组劣化趋势预测准确性。 展开更多
关键词 劣化趋势预测 完全自适应噪声集成经验模态分解 TRANSFORMER 自回归滑动平均
在线阅读 下载PDF
基于TLGMCC准则联合CEEMDAN与LWT的优化降噪方法
11
作者 刘彦明 曹敏 +1 位作者 孙安 项敢亮 《光通信技术》 北大核心 2025年第2期11-16,共6页
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分... 针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。 展开更多
关键词 自适应噪声完备集合经验模态分解 提升小波变换 时域局部广义最大互相关熵 模态分量
在线阅读 下载PDF
强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断
12
作者 朱仁杰 宋恩哲 +1 位作者 姚崇 柯赟 《中国舰船研究》 北大核心 2025年第2期20-29,共10页
[目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电... [目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电机故障信号分解为多个本征模态函数(IMF)分量,并基于去趋势波动分析(DFA)划分IMF中噪声和信息的主导信号,对于噪声主导信号使用经验小波变化(EWT)予以降噪;然后,构建BRECAN网络,基于变分贝叶斯理论,使用网络参数代替传统网络点估计的训练方式,使用参数建模,拟合噪声对模型训练的干扰,并通过残差高效通道注意力(RECA)模块引导网络提取故障差异特征;最后,通过电机故障模拟实验台,验证所提方法的有效性。[结果]结果表明,所提方法在强噪声下能够实现船舶电机故障的精确诊断,在信噪比为-12dB的条件下仍能保持90%以上的诊断精度。[结论]研究成果可为强噪声下船舶电机故障诊断提供参考。 展开更多
关键词 电动机 故障分析 故障诊断 人工智能 完全集合经验模态分解(CEEMDAN) 贝叶斯残差高效通道注意力网络(BRECAN)
在线阅读 下载PDF
基于MODWT-CEEMDAN-LSTM的短期光伏功率区间预测模型
13
作者 陈船宇 熊国江 +1 位作者 方厚康 罗颖勋 《太阳能学报》 北大核心 2025年第2期416-424,共9页
针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解... 针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解得到本征模态函数(IMF)分量;再将这些IMF分量分别输入进LSTM进行分量预测并将分量预测结果重构得到点预测结果;最后利用分位数回归对点预测结果进行建模后得到区间预测结果。实际算例表明,时频域分解方法与频域分解方法的结合,使得该模型在3种天气情况下的光伏功率点预测和区间预测均表现出优异的鲁棒性和准确性。 展开更多
关键词 光伏功率 预测 深度学习 长短期记忆 最大重叠小波变换 自适应噪声完备集合经验模态分解
在线阅读 下载PDF
基于CEEMDAN-IASO-TCN组合模型的中长期径流预报
14
作者 徐军杨 罗远林 +3 位作者 刘月馨 陈冬强 张坚 张楚 《人民长江》 北大核心 2025年第4期128-135,共8页
准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月... 准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月径流序列进行分解,然后利用IASO对TCN模型的批量大小、学习率、丢弃因子进行寻优,得到最优的时间卷积网络结构并利用最优的IASO-TCN对分量进行预测,最后重构分量预测结果得到最终月径流预测结果;以岷江流域镇江关水文站1957~2019年的月径流数据为研究对象,将所提模型与其他模型进行对比。研究结果表明:CEEMDAN-IASO-TCN模型具有较高的预测精度,训练和测试阶段的纳什系数分别达到0.9191和0.8691。研究成果可为水资源可持续利用提供可靠依据。 展开更多
关键词 中长期径流预报 自适应噪声完备集合经验模态分解 原子搜索算法 时间卷积网络 岷江流域
在线阅读 下载PDF
A novel feature extraction method for ship-radiated noise 被引量:5
15
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise Feature extraction Classification and recognition
在线阅读 下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:4
16
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) Generative adversarial interpolation network(GAIN)
在线阅读 下载PDF
CEEMD-FastICA-CWT联合瞬态响应阶次的电驱总成噪声源识别 被引量:2
17
作者 张威 景国玺 +2 位作者 武一民 杨征睿 高辉 《中国测试》 CAS 北大核心 2024年第4期144-152,共9页
以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastI... 以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastICA)方法提取纯电模式稳态工况下单一通道噪声信号特征,利用复Morlet小波变换及FFT对各分量信号时频特性进行识别。其次,采用阶次分析法和声能叠加法对稳态分量信号对应的各瞬态响应阶次能量进行对比分析,并结合皮尔逊积矩相关系数(Pearson product moment correlation coefficient,PPMCC)相似性识别确定不同噪声激励源贡献度。结果表明:减速齿副啮合噪声对该增程式电驱总成纯电模式运行噪声整体贡献度最大。 展开更多
关键词 电驱动总成 噪声源识别 互补集合经验模态分解 快速独立分量分析 连续小波变换 阶次分析
在线阅读 下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取 被引量:2
18
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
在线阅读 下载PDF
考虑延误特征的航站楼离港聚集客流预测方法 被引量:1
19
作者 李明捷 王涛 +2 位作者 黄欣宁 田杰 姚霖昊 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第3期240-254,共15页
为满足航班延误下航站楼内资源规划与旅客管理对聚集客流预测所提出的高精度和高效率要求,本文提出一种融合延误特征的离港聚集客流预测方法。通过引入航班延误特征量化表征航站楼离港聚集客流的波动情况,探究航班延误下离港聚集客流波... 为满足航班延误下航站楼内资源规划与旅客管理对聚集客流预测所提出的高精度和高效率要求,本文提出一种融合延误特征的离港聚集客流预测方法。通过引入航班延误特征量化表征航站楼离港聚集客流的波动情况,探究航班延误下离港聚集客流波动规律和分布特征,构建基于自适应噪声完全集合经验模态分解(CEEMDAN)、排列熵算法(PE)以及鲸鱼优化算法(WOA)优化的长短期记忆神经网络(LSTM)的短期航站楼聚集客流预测模型。首先,应用CEEMDAN将聚集客流数据序列分解为若干模态分量(Intrinsic Mode Function, IMF)和残差量(Residual, Res),降低原序列中数据的复杂性和非平稳性影响;其次,为减小模型计算规模,同时提高预测效率和精度,采用PE算法对IMF分量进行熵值重构;最后,建立WOA-LSTM聚集客流预测模型,利用鲸鱼优化算法优化LSTM超参数,叠加重构分量的预测结果,得到最终的聚集客流预测值。将模型应用于长三角某枢纽机场进行实例验证。结果表明:CEEMDAN-PE-WOA-LSTM预测模型性能最优,相较单一的LSTM模型,候机大厅聚集客流预测的均方根误差、平均绝对误差以及百分比误差分别降低42.78%、44.00%及45.62%;相较CEEMDAN-WOA-LSTM模型,预测效率提高41.64%。本文所提模型能够有效拟合存在显著非线性和非平稳性特征的候机大厅聚集客流,具有较高的预测精度和运算效率。 展开更多
关键词 航空运输 离港聚集客流预测 完全自适应噪声集合经验模态分解 长短期记忆神经网络 航站楼客流 航班延误特征
在线阅读 下载PDF
基于CEEMD和统计参数的斜拉桥损伤识别方法研究
20
作者 刘杰 丁雪 +2 位作者 刘庆宽 王海龙 卜建清 《振动与冲击》 EI CSCD 北大核心 2024年第19期326-336,共11页
为解决仅使用互补集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法的斜拉桥信号分解存在含噪固有模态函数(intrinsic mode function,IMF)分量且不能进行损伤定量的问题,提出了一种基于CEEMD与统计参... 为解决仅使用互补集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法的斜拉桥信号分解存在含噪固有模态函数(intrinsic mode function,IMF)分量且不能进行损伤定量的问题,提出了一种基于CEEMD与统计参数方法相结合的斜拉桥损伤识别方法。该方法基于CEEMD方法对斜拉桥动力响应信号进行自适应性分解,确定适用的白噪声幅值标准差并推导CEEMD方法的集成次数,得到各阶IMF分量;采用欧氏距离对分解的IMF分量进行谱系聚类分析以避免模态混叠现象;采用峰度统计参数的有效权重峰度指标方法滤除含噪IMF分量,提取有效IMF分量并重构为有效IMF分量和;利用变异系数统计参数、二阶中心差分法和泰勒展开式推导损伤定位指标,根据四阶统计矩峰度统计参数推导损伤定量指标。用所提方法对某斜拉桥进行损伤识别研究,结果表明:仿真分析的损伤定位识别精度为100%,损伤定量最大误差为1.80%;在高斯白噪声干扰下,损伤定位不受影响,损伤定量最大误差为1.88%;进行实桥的损伤识别,结果表明实桥主梁无损伤。 展开更多
关键词 斜拉桥 损伤识别方法 互补集成经验模态分解(CEEMD) 统计参数 损伤定量 噪声干扰
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部