期刊文献+
共找到706篇文章
< 1 2 36 >
每页显示 20 50 100
基于SSA-VMD的空天地算力网络中数字孪生逻辑靶场负载预测 被引量:1
1
作者 陈浩 党政 +2 位作者 黑新宏 赵彤 张杰 《计算机工程》 北大核心 2025年第5期20-32,共13页
在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模... 在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模型通过GAF将一维负载数据转换为二维图像,利用CNN提取局部特征,使用SENet优化特征重要性,采用GRU捕捉时序特征,实现了高效的特征融合和精准预测。此外,GCSG模型采用融合麻雀搜索算法(SSA)的变分模态分解(VMD)对负载数据进行平稳化处理,进一步提高了预测性能。实验结果表明,GCSG模型在不同数据长度下均表现出优异的预测精度和稳定性,且在多步预测任务中同样表现突出。因此,GCSG模型显著提升了负载数据的预测精度,为空天地算力网络中的数字孪生系统负载预测提供了强有力的解决方案。 展开更多
关键词 空天地多层次算力网络 数字孪生 逻辑靶场 负载预测 变分模态分解
在线阅读 下载PDF
基于改进VMD及ConvNeXt的小电流接地系统单相接地故障选线方法 被引量:2
2
作者 张浩 张大海 +2 位作者 刘乃毓 吴奎忠 侍哲 《高电压技术》 北大核心 2025年第2期730-741,I0021,共13页
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模... 对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。 展开更多
关键词 故障选线 蚁狮优化算法 变分模态分解 分布熵 格拉姆角场 Conv Ne Xt
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
3
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法
4
作者 刘亚荣 支正新 谢晓兰 《科学技术与工程》 北大核心 2025年第28期12013-12022,共10页
针对变分模态分解(variational mode decomposition,VMD)人为选择惩罚因子和模态个数难以有效分解振动信号,导致故障诊断识别率低的问题,提出一种基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法。首先,利用Cubic混沌映射、黄金... 针对变分模态分解(variational mode decomposition,VMD)人为选择惩罚因子和模态个数难以有效分解振动信号,导致故障诊断识别率低的问题,提出一种基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法。首先,利用Cubic混沌映射、黄金正弦策略改进海象优化算法(improved walrus optimization algorithm,IWaOA)。然后用IWaOA优化VMD,找出最佳的惩罚因子和模态个数,再使用VMD对振动信号进行分解并计算各个模态分量的7种熵值特征,建立IWaOA-VMD特征提取模型。其次,采用线性判别分析(linear discriminant analysis,LDA)方法对7种熵值特征进行降维融合,得到融合后的特征向量输入反向传播(back propagation,BP)神经网络中进行识别,建立LDA-BP故障识别模型。最后,对本文方法进行实验验证。结果表明:所提方法在对凯斯西储大学轴承数据集上的故障识别准确率达99.58%,且在强噪声干扰下达到92%以上的准确率;为验证其适用性,进一步在对西安交通大学XJTU-SY数据集上的故障识别准确率达到100%,证实了所提方法的噪声鲁棒性与多源数据适用性。 展开更多
关键词 振动信号 变分模态分解(vmd) 特征提取 故障诊断
在线阅读 下载PDF
基于参数优化VMD的心率检测去噪算法
5
作者 肖剑 张现国 +2 位作者 宋烨 杨小苑 程鸿亮 《现代雷达》 北大核心 2025年第6期46-55,共10页
针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性... 针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性和全局搜索能力,文中利用ICOA对VMD的最佳适应度参数进行搜索,确定惩罚参数和分量个数,对心跳信号进行重构,从而实现心跳信号的干扰噪声去除。实验结果表明,ICOA-VMD方法具有收敛速度快、精度高的特点,信噪比和均方误差的评估和时域分析验证了该算法相较于小波变换和经验模态分解具有更好的性能。在不同距离的常规环境下,该方法针对不同受试者的心率检测平均精确度可以达到95.40%。 展开更多
关键词 毫米波雷达 信号处理 心率检测 浣熊优化算法 变分模态分解
在线阅读 下载PDF
基于DAS-VMD的甲烷/一氧化碳痕量气体同步监测及噪声抑制方法
6
作者 邵昊 袁玉洁 +2 位作者 王凯 张贝 黎奉标 《中国安全生产科学技术》 北大核心 2025年第10期88-95,共8页
为提高煤矿有毒有害气体CH_(4)和CO的实时动态监测能力,基于直接激光吸收光谱(DAS)与变分模态分解法(VMD),研究CH_(4)和CO双组份气体同步在线监测系统,并进行试验验证。针对CH_(4)和CO痕量气体,选用中心波长为1653.4 nm和2325.2 nm的2... 为提高煤矿有毒有害气体CH_(4)和CO的实时动态监测能力,基于直接激光吸收光谱(DAS)与变分模态分解法(VMD),研究CH_(4)和CO双组份气体同步在线监测系统,并进行试验验证。针对CH_(4)和CO痕量气体,选用中心波长为1653.4 nm和2325.2 nm的2台分布式反馈激光器,采用时分复用(TDM)技术,构建双组份痕量气体同步在线监测系统,克服双激光器工作时的相互干扰;优化VMD方法,实现信号分解和噪声抑制,提高检测系统的信噪比;搭建煤自燃在线监测实验平台,开展煤自燃长时间的在线监测试验。研究结果表明:降噪后CH_(4)和CO的探测极限分别为9.4×10^(-6)%与9.9×10^(-6)%,CH_(4)和CO检测极限降幅为38.4%,39.2%;所构建系统在煤自燃过程中对CH_(4)和CO体积分数变化具有良好的跟踪能力与检测可靠性。研究结果可为煤矿灾害气体的高精度、高稳定性实时监测提供可靠的技术手段,提高煤自燃早期预警能力。 展开更多
关键词 直接激光吸收光谱(DAS) 变分模态分解法(vmd) 甲烷 一氧化碳 痕量气体 噪声抑制
在线阅读 下载PDF
基于改进SVD-HPO-VMD电缆局部放电去噪方法
7
作者 马星河 李凯濛 +1 位作者 赵军营 刘鹏 《广东电力》 北大核心 2025年第4期89-100,共12页
对局部放电(partial discharge,PD)的检测是获知高压电缆绝缘状态的主要手段之一,但现场对PD信号的检测易受到噪声的干扰,从而影响对信号检测的准确度。为此,提出一种采用猎人猎物优化算法(hunter-prey optimization algorithm,HPO)优... 对局部放电(partial discharge,PD)的检测是获知高压电缆绝缘状态的主要手段之一,但现场对PD信号的检测易受到噪声的干扰,从而影响对信号检测的准确度。为此,提出一种采用猎人猎物优化算法(hunter-prey optimization algorithm,HPO)优化变分模态分解(variational mode decomposition,VMD),再采用改进奇异值分解(singular value decomposition,SVD)对PD信号进行降噪的方法。首先,对含噪PD信号进行傅里叶变换,在傅里叶变换功率谱中运用差分变换及设定阈值的方法去筛选周期性窄带干扰奇异值;然后,通过HPO优化VMD的参数选择,分解出K个本征模态函数(intrinsic mode function,IMF),利用模糊散布熵(fuzzy dispersion entropy,FuzzyDispEn)确定IMF的性质,从而区分有效分量和噪声分量,对分类后的噪声主导分量通过改进小波阈值方法进行去噪;最后,将信号进行重构,通过仿真和实验计算去噪后信号的信噪比、归一化相关系数以及均方误差,并与传统方法进行比对,证明提出的方法能够有效去除PD信号中的噪声分量,能够运用到供电系统中。 展开更多
关键词 局部放电 变分模态分解 奇异值分解 猎人猎物优化算法 模糊散布熵
在线阅读 下载PDF
基于BWO和WOA的VMD-LSTM短期风速预测
8
作者 贾世会 刘立夫 +1 位作者 迟晓妮 李高西 《郑州大学学报(工学版)》 北大核心 2025年第3期59-66,共8页
针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到... 针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到分解的子序列;其次,对于LSTM中的隐含层节点数、最大训练次数和初始学习率等参数,使用鲸鱼优化算法进行确定;最后,利用LSTM的非线性拟合能力对数据进行预测。结果表明:所提预测模型在测试集上的RMSE、MAE、MAPE分别为0.2234,0.1727,0.0837,均低于其他对比模型,验证了所提模型在短期风速预测问题上的有效性。 展开更多
关键词 白鲸优化算法 鲸鱼优化算法 变分模态分解 LSTM 风速预测
在线阅读 下载PDF
基于STOA-VMD和改进TCN模型的水泵机组振动趋势预测
9
作者 王伟生 张宁 +5 位作者 邢磊 周保林 郭新帅 安东 高源 张孝远 《人民黄河》 北大核心 2025年第4期141-144,151,共5页
水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数... 水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数优化,实现振动信号的最优自适应分解,然后利用改进TCN对每个分解模态进行预测,最后叠加所有结果得到最终预测结果。以国内某雨水泵站水泵机组为例,基于水导轴承水平向摆度数据进行模型验证。结果表明:上述组合模型的预测值与监测值的变化趋势基本一致,其具有良好的预测能力。与STOA-VMD-TCN、VMD-EnTCN、VMD-TCN、TCN模型相比,所提出模型的E_(MA)、E_(RMS)、E_(MAP)最小,预测精度最高。 展开更多
关键词 时间卷积网络 乌燕鸥算法 变分模态分解 振动信号 趋势预测 水泵机组
在线阅读 下载PDF
基于AOA优化SVMD和A-CNN的矿井电网单相接地故障选线方法研究
10
作者 杨战社 张程 +3 位作者 荣相 魏礼鹏 李瑞 韩耀 《煤炭工程》 北大核心 2025年第7期171-178,共8页
针对矿井电网单相接地故障选线受井下环境的干扰较大、故障选线速度和准确率低等问题,提出一种基于算术优化算法改进连续变分模态分解和注意力机制卷积神经网络的故障选线方法。首先,通过算术优化算法优化连续变分模态分解的参数,把零... 针对矿井电网单相接地故障选线受井下环境的干扰较大、故障选线速度和准确率低等问题,提出一种基于算术优化算法改进连续变分模态分解和注意力机制卷积神经网络的故障选线方法。首先,通过算术优化算法优化连续变分模态分解的参数,把零序电流序列分解成不同频率的固有模态函数;其次,引入相对位置矩阵的数据预处理方式,将一维序列转换成二维图像,获得零序电流信号的时频特征图;最后,将注意力机制嵌入到CNN分类算法模型中,实现故障选线。仿真与实验结果表明,该方法能够在强噪声、采样时间不同步等情况下准确地选择出故障线路,可满足矿井电网对选线准确性和可靠性的需求。 展开更多
关键词 矿井供电系统 单相接地故障 连续变分模态分解 算术优化算法 注意力机制
在线阅读 下载PDF
一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法
11
作者 张涛 魏彪 +2 位作者 李永健 马赫 何勇 《现代电子技术》 北大核心 2025年第12期54-60,共7页
针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO... 针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO)勘察阶段,通过非线性加权系数ω动态调节步长搜索因子,降低个体位置更新对局部信息的依赖,显著提高算法收敛速度与精度;最后,构建多尺度均值排列熵(MMPE)与峭度的融合指标作为适应度函数,增强故障特征敏感性。通过对不同的实测信号进行测试,结果表明,在强噪声干扰下,相较传统方法,所提方法可提前300 min(初期故障)和700 min(微弱故障)识别故障特征,验证了其工程实用性。 展开更多
关键词 正余弦算法 滚动轴承 故障诊断 改进北方苍鹰优化算法 多尺度均值排列熵 变分模态分解
在线阅读 下载PDF
基于AVMD与Teager能量算子的风电机组故障诊断方法
12
作者 时培明 伊思颖 +2 位作者 张慧超 范雅斐 韩东颖 《振动.测试与诊断》 北大核心 2025年第2期390-397,418,共9页
为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decompositi... 为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decomposition,简称AVMD)算法的风电机组故障诊断方法。首先,将包络熵-峭度-互信息准则(envelope entropy,kurtosis and mutual information,简称EKM)作为黏菌算法(slime mold algorithm,简称SMA)的适应度函数来寻找最优解,并按照最优解对故障信号进行分解;其次,计算每个固有模态函数分量(inherent modal function,简称IMF)的峭度和与原信号的互信息,选择具有故障特征的分量进行重构;最后,通过Teager能量算子解调来识别风电机组故障特征频率。仿真信号和实际风电机组故障信号表明,所提方法能够找到故障频率及其倍频,验证了其在风电机组故障诊断领域中的有效性。 展开更多
关键词 自适应变分模态分解 黏菌算法 包络熵-峭度-互信息准则 TEAGER能量算子
在线阅读 下载PDF
基于EEMD-GWO-VMD的滚动轴承故障特征提取
13
作者 张涛 张振彬 谢剑龙 《中国工程机械学报》 北大核心 2025年第3期470-475,共6页
针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,... 针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,以包络熵为目标函数,采用灰狼算法(GWO)优化变分模态分解(VMD)的惩罚因子和模态分解层数,并采用仿真信号对比分析VMD、GWO-VMD和EEMD-GWO-VMD这3种方法的降噪效果。最后,结合CWRU数据集和高速列车轴箱轴承台架试验数据,进一步验证EEMD-GWO-VMD降噪方法的有效性。 展开更多
关键词 滚动轴承 灰狼算法(GWO) 集成经验模态分解(EEMD) 变分模态分解(vmd)
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
14
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期光伏功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于VMD-HHT算法的油管输送射孔振动监测研究
15
作者 鲁永辉 柴鹏 +4 位作者 冉增勇 刘帅 霍勇 杨伟 张馨尹 《石油物探》 北大核心 2025年第6期1172-1178,共7页
我国正不断加大非常规和深海油气资源的开发力度,此类油气资源的开采方式多以深井、超深井为主。在套管射孔完井作业过程中,由射孔弹爆炸引起的振动随井深的增加而明显衰减,导致此类井的射孔监测难度增大。提出了一种基于变分模态分解(V... 我国正不断加大非常规和深海油气资源的开发力度,此类油气资源的开采方式多以深井、超深井为主。在套管射孔完井作业过程中,由射孔弹爆炸引起的振动随井深的增加而明显衰减,导致此类井的射孔监测难度增大。提出了一种基于变分模态分解(VMD)的深井油管输送射孔振动监测方法。该方法采用高精度加速度振动传感器与高分辨率采集卡搭建井口振动信号采集系统,实现了对井口振动信号的有效采集。分析了井口振动信号的来源及其频率范围,采集了延长油田某水平井射孔作业时井口的振动信号,并对比了压力起爆油管输送射孔和电缆射孔这两种方式下井口振动信号的时域特征。采用VMD方法将压力起爆油管输送射孔的井口振动信号分解为7个不同频段的本征模态函数,并对各分量进行希尔伯特-黄变换(HHT),识别出了射孔信号和泵车加压信号。应用结果表明,该方法提取的射孔振动信号能够准确反映射孔振动特征,提高深井油管输送射孔振动监测的精度。 展开更多
关键词 变分模态分解 射孔监测 希尔伯特-黄变换 油管输送射孔 射孔枪
在线阅读 下载PDF
基于改进小波阈值和优化VMD算法的语音增强方法 被引量:3
16
作者 张礼艳 刘增力 彭艺 《吉林大学学报(理学版)》 北大核心 2025年第2期608-621,共14页
针对语音信号传输过程中受噪声和回声等因素干扰,导致信号质量和可懂度下降的问题,提出一种基于优化的变分模态分解算法和改进小波阈值的语音信号增强方法.首先,采用麻雀搜索算法优化模态分解参数,并分解语音信号得到模态分量;其次,根... 针对语音信号传输过程中受噪声和回声等因素干扰,导致信号质量和可懂度下降的问题,提出一种基于优化的变分模态分解算法和改进小波阈值的语音信号增强方法.首先,采用麻雀搜索算法优化模态分解参数,并分解语音信号得到模态分量;其次,根据模态分量与原信号的相关系数和中心频率,消除高频噪声分量,保留接近原信号的模态分量作为纯语音,其他模态分量作为带噪语音,进行小波阈值处理;最后,重构纯语音和处理后的噪声模态分量,得到增强的语音信号.结果表明:该方法比单一方法具有更优的语音增强效果;优化的变分模态分解算法和改进的阈值与阈值函数实现了比传统方法更好的增强效果,适用于各种噪声环境,有效提升了语音信号的质量和可懂度. 展开更多
关键词 语音增强 麻雀搜索算法 变分模态分解 小波阈值 相关系数
在线阅读 下载PDF
基于IIVY-SVMD-MPE-SVM的开关柜局部放电故障识别 被引量:2
17
作者 解骞 郑胜瑜 +3 位作者 刘兴华 李辉 党建 解佗 《实验技术与管理》 北大核心 2025年第4期26-36,共11页
针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(su... 针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(support vector machine,SVM)的模式识别算法,实现了局部放电类型的故障识别。首先,融合空间金字塔匹配混沌映射、自适应t分布与动态自适应权三种策略提出IIVY算法;其次,对局部放电原始超声波信号进行SVMD并提取多尺度排列熵(multivariate permutation entropy,MPE),建立基于IIVY-SVMD-MPE的局部放电特征提取策略,利用IIVY算法自适应地选取SVMD惩罚因子α,结合相关系数筛选出最大的三个本征模态函数(intrinsic mode function,IMF)分量提取MPE,构建多维融合特征数据集;再次,提出并建立基于IIVY-SVM的开关柜局部放电故障识别模型,利用IIVY对SVM中惩罚参数C及核参σ进行自适应寻优;最后,通过对比验证表明所建立模型综合识别率更高、在不同评价指标上表现更佳,综合识别准确率达到98.8%,有效提高了故障识别的准确性与可靠性。 展开更多
关键词 超声波 改进常青藤算法 连续变分模态分解 多尺度排列熵
在线阅读 下载PDF
基于VMD-IDBO-LSTM的光伏功率预测模型 被引量:2
18
作者 乔雅宁 贾宇琛 +1 位作者 高立艾 温鹏 《现代电子技术》 北大核心 2025年第6期168-174,共7页
针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到... 针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到减少光伏功率波动性的目的。利用可变螺旋搜索策略、Lévy飞行策略和自适应t分布变异策略来改进蜣螂算法,对改进后的蜣螂算法与其他优化算法进行性能测试对比,经过改进的蜣螂算法来优化LSTM中的网络隐含层个数和初始学习速率并建立预测模型,将各个子序列的预测值相加,从而得出最后的预测功率结果。通过实际算例表明,与LSTM预测模型、DBO-LSTM预测模型、VMD-DBO-LSTM预测模型相比,VMD-IDBO-LSTM模型预测精度较高,更具有准确性。 展开更多
关键词 光伏发电 功率预测 变分模态分解 改进蜣螂算法 长短期记忆网络 优化算法
在线阅读 下载PDF
基于OVMD的大坝变形监测数据预处理方法 被引量:2
19
作者 陈斯煜 盛金保 +1 位作者 林潮宁 谷艳昌 《水利水运工程学报》 北大核心 2025年第3期139-147,共9页
变形是反映大坝安全性态的重要效应量之一,为提高变形监测数据粗差识别与降噪的可靠性,综合运用多种群并行Rao-1算法、变分模态分解和多种判别指标,提出一种非监督学习的大坝变形监测数据预处理方法。首先,该方法借助变分模态分解对单... 变形是反映大坝安全性态的重要效应量之一,为提高变形监测数据粗差识别与降噪的可靠性,综合运用多种群并行Rao-1算法、变分模态分解和多种判别指标,提出一种非监督学习的大坝变形监测数据预处理方法。首先,该方法借助变分模态分解对单测点位移监测序列进行非递归分解,并引入平均包络熵为目标函数,采用多种群并行Rao-1算法确定变分模态分解适宜的超参数,以提升模型的分解性能。然后,借助样本熵和相关系数指标分离并定位包含粗差和噪声特征的高频模态。最后,借助箱线图法和模态叠加法分别实现变形监测数据的粗差辨识和降噪。以仿真数据和某大坝实测水平变形数据进行验证,结果表明该方法具备优异的粗差定位和降噪性能,可为大坝变形监测数据预处理提供新的思路和技术支持。 展开更多
关键词 大坝变形数据 变分模态分解 优化算法 粗差辨识 数据降噪
在线阅读 下载PDF
VMD降噪方法在木材空鼓检测中的应用与优化 被引量:1
20
作者 袁林 张丹 +1 位作者 隋文涛 张思状 《机械设计与制造》 北大核心 2025年第7期210-213,共4页
目前木材企业大多采用人工敲击方式检测是否有空鼓等缺陷,主观性强且效率较低。对于此,提出基于声音信号和变分模态分解的空鼓检测方法。首先根据各本征模态函数分量中心频率是否重叠确定最优分解层数K,运用最优K值步进100确定最优惩罚... 目前木材企业大多采用人工敲击方式检测是否有空鼓等缺陷,主观性强且效率较低。对于此,提出基于声音信号和变分模态分解的空鼓检测方法。首先根据各本征模态函数分量中心频率是否重叠确定最优分解层数K,运用最优K值步进100确定最优惩罚因子,确定最优参数组合K=7、α=1000。然后对各分量与原信号进行相关性降噪,滤除相关性较低的分量,进而根据信号频谱结构确定是否有空鼓。通过实验对比体现了该方法降噪的优势,为木板缺陷检测提供了可靠参考。 展开更多
关键词 声音信号 变分模态分解(vmd) 相关性分析 降噪
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部