Single unmanned aerial vehicle(UAV)multitasking plays an important role in multiple UAVs cooperative control,which is as well as the most complicated and hardest part.This paper establishes a threedimensional topograp...Single unmanned aerial vehicle(UAV)multitasking plays an important role in multiple UAVs cooperative control,which is as well as the most complicated and hardest part.This paper establishes a threedimensional topographical map,and an improved adaptive differential evolution(IADE)algorithm is proposed for single UAV multitasking.As an optimized problem,the efficiency of using standard differential evolution to obtain the global optimal solution is very low to avoid this problem.Therefore,the algorithm adopts the mutation factor and crossover factor into dynamic adaptive functions,which makes the crossover factor and variation factor can be adjusted with the number of population iteration and individual fitness value,letting the algorithm exploration and development more reasonable.The experimental results implicate that the IADE algorithm has better performance,higher convergence and efficiency to solve the multitasking problem compared with other algorithms.展开更多
Shape optimization of mechanical components is one of the issues that have been considered in recent years. Different methods were presented such as adaptive biological for reducing costs and increasing accuracy. The ...Shape optimization of mechanical components is one of the issues that have been considered in recent years. Different methods were presented such as adaptive biological for reducing costs and increasing accuracy. The effects of step factor, the number of control points and the definition way of control points coordinates in convergence rate were studied. A code was written using ANSYS Parametric Design Language (APDL) which receives the studied parameters as input and obtains the optimum shape for the components. The results show that for achieving successful optimization, step factor should be in a specific range. It is found that the use of any coordinate system in defining control points coordinates and selection of any direction for stimulus vector of algorithm will also result in optimum shape. Furthermore, by increasing the number of control points, some non-uniformities are created in the studied boundary. Achieving acceptable accuracy seems impossible due to the creation of saw form at the studied boundary which is called "saw position".展开更多
针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for ...针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for unsupervised feature selection,URLUFS)。该方法将非负矩阵分解作用于广义不相关回归模型的投影矩阵,使投影矩阵实现非线性的维数约简并获得特征选择矩阵。在特征选择矩阵的基础上,引入自适应图学习来进一步挖掘数据的局部流形结构,并对特征选择矩阵施加范数约束以保持稀疏性。利用潜在表示对数据样本间的相互关系进行学习,引导回归模型中的伪标签矩阵,从而选择出更具有判别性的特征。在8个公开的数据集上进行了数值对比实验,实验结果表明:基于广义不相关回归和潜在表示学习的无监督特征选择算法明显优于其他8种无监督特征选择算法。展开更多
文摘Single unmanned aerial vehicle(UAV)multitasking plays an important role in multiple UAVs cooperative control,which is as well as the most complicated and hardest part.This paper establishes a threedimensional topographical map,and an improved adaptive differential evolution(IADE)algorithm is proposed for single UAV multitasking.As an optimized problem,the efficiency of using standard differential evolution to obtain the global optimal solution is very low to avoid this problem.Therefore,the algorithm adopts the mutation factor and crossover factor into dynamic adaptive functions,which makes the crossover factor and variation factor can be adjusted with the number of population iteration and individual fitness value,letting the algorithm exploration and development more reasonable.The experimental results implicate that the IADE algorithm has better performance,higher convergence and efficiency to solve the multitasking problem compared with other algorithms.
文摘Shape optimization of mechanical components is one of the issues that have been considered in recent years. Different methods were presented such as adaptive biological for reducing costs and increasing accuracy. The effects of step factor, the number of control points and the definition way of control points coordinates in convergence rate were studied. A code was written using ANSYS Parametric Design Language (APDL) which receives the studied parameters as input and obtains the optimum shape for the components. The results show that for achieving successful optimization, step factor should be in a specific range. It is found that the use of any coordinate system in defining control points coordinates and selection of any direction for stimulus vector of algorithm will also result in optimum shape. Furthermore, by increasing the number of control points, some non-uniformities are created in the studied boundary. Achieving acceptable accuracy seems impossible due to the creation of saw form at the studied boundary which is called "saw position".
文摘针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for unsupervised feature selection,URLUFS)。该方法将非负矩阵分解作用于广义不相关回归模型的投影矩阵,使投影矩阵实现非线性的维数约简并获得特征选择矩阵。在特征选择矩阵的基础上,引入自适应图学习来进一步挖掘数据的局部流形结构,并对特征选择矩阵施加范数约束以保持稀疏性。利用潜在表示对数据样本间的相互关系进行学习,引导回归模型中的伪标签矩阵,从而选择出更具有判别性的特征。在8个公开的数据集上进行了数值对比实验,实验结果表明:基于广义不相关回归和潜在表示学习的无监督特征选择算法明显优于其他8种无监督特征选择算法。