A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation err...A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation error dynamics, the observer-based decentralized indirect adaptive fuzzy control scheme is presented for a class of large-scale nonlinear systems using the combination of H∞ tracking technique, a fuzzy adaptive observer and fuzzy inference systems. The output feedback and adaptation mechanisms are both robust and implementable indeed owing to their freedom from the unavailable observation error vector. All the signals of the closed-loop largescale system are guaranteed to stay uniformly bounded and the output errors take on H∞ tracking performance. Simulation results substantiate the effectiveness of the proposed scheme.展开更多
In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy...In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.展开更多
基金supported by the National Natural Science Foundation of China(90510010).
文摘A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation error dynamics, the observer-based decentralized indirect adaptive fuzzy control scheme is presented for a class of large-scale nonlinear systems using the combination of H∞ tracking technique, a fuzzy adaptive observer and fuzzy inference systems. The output feedback and adaptation mechanisms are both robust and implementable indeed owing to their freedom from the unavailable observation error vector. All the signals of the closed-loop largescale system are guaranteed to stay uniformly bounded and the output errors take on H∞ tracking performance. Simulation results substantiate the effectiveness of the proposed scheme.
文摘In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.