期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于自适应辛几何模态分解−多元线性回归−卷积长短时记忆的台区电力负荷预测
1
作者 方磊 楚成博 +4 位作者 何映虹 冯隆基 刘福政 王宁 张法业 《现代电力》 北大核心 2025年第4期840-846,共7页
准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,AS... 准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。 展开更多
关键词 电力负荷预测 自适应辛几何模态分解 多元线性回归 卷积长短时记忆网络
在线阅读 下载PDF
基于ISGMD与TLS-ESPRIT的谐波/间谐波检测方法 被引量:2
2
作者 周航 郭成 《电源学报》 北大核心 2025年第3期67-75,共9页
针对现有谐波检测方法提取精度易受噪声影响的问题,提出1种基于迭代辛几何模态分解结合总体最小二乘-旋转不变技术估计信号参数TLS-ESPRIT(total least squares and estimation of signal parameters with rotation invariant technique... 针对现有谐波检测方法提取精度易受噪声影响的问题,提出1种基于迭代辛几何模态分解结合总体最小二乘-旋转不变技术估计信号参数TLS-ESPRIT(total least squares and estimation of signal parameters with rotation invariant technique)的谐波检测方法。首先,通过构造谐波信号的轨迹矩阵并结合矩阵变换获取初始辛几何分量;其次,基于动态时间规整将相似度高的初始辛几何分量线性组合并剔除残余分量;然后,通过计算归一化平均绝对误差获得相互独立的各次谐波分量;最后,采用TLS-ESPRIT算法得到各次谐波与间谐波分量的参数。通过仿真与实测数据分析,验证了所提方法在噪声环境下进行谐波与间谐波分析的优越性。 展开更多
关键词 谐波检测 辛几何模态分解 动态时间规整 旋转不变技术
在线阅读 下载PDF
基于OSGMD-Hilbert包络对数分析的齿轮箱齿面磨损早期故障诊断
3
作者 俞香熔 王友仁 王胤博 《振动与冲击》 北大核心 2025年第7期225-231,274,共8页
针对环境噪声下齿轮箱齿面磨损早期微弱故障特征难以提取的问题,提出了一种基于优化型辛几何模态分解-Hilbert包络对数分析的齿轮磨损故障诊断方法。新方法中引入Cao算法和功率谱密度,提出最近邻波动偏差实现嵌入维数的自适应确定,利用... 针对环境噪声下齿轮箱齿面磨损早期微弱故障特征难以提取的问题,提出了一种基于优化型辛几何模态分解-Hilbert包络对数分析的齿轮磨损故障诊断方法。新方法中引入Cao算法和功率谱密度,提出最近邻波动偏差实现嵌入维数的自适应确定,利用奇异值分解进行降噪,采用Pearson-功率谱熵差和闵氏距离作为重构准则以获取特征模态分量,通过Hilbert包络对数分析法突出故障频率成分,并进行故障诊断。该新方法克服了辛几何模态分解嵌入维数依赖经验公式、重构准则单一和噪声鲁棒性欠佳的缺陷。仿真与试验结果分析表明,与辛几何模态分解(symplectic geometric mode decomposition,SGMD)、迭代SGMD、变分模态分解和经验模态分解相比,该新方法能够有效提取早期齿面磨损故障特征信息,表现出更好的鲁棒性。 展开更多
关键词 早期故障诊断 振动信号特征信息提取 优化型辛几何模态分解(OSGMD) 齿轮磨损 Hilbert包络对数分析法 辛几何模态分解(SGMD)
在线阅读 下载PDF
优化辛几何模态分解及改进ResNeXt神经网络的齿轮箱故障诊断方法
4
作者 郑心成 郝如江 +3 位作者 姚勃羽 王天池 尚腾龙 冯鹏帆 《科学技术与工程》 北大核心 2025年第7期2792-2799,共8页
故障诊断领域中常将信号处理与深度学习相结合以实现更好的诊断效果。基于此,对辛几何模态分解与ResNeXt神经网络分别进行了改进与优化,提出了一种基于优化辛几何模态分解与改进ResNeXt神经网络相结合的齿轮箱故障诊断模型。首先将采集... 故障诊断领域中常将信号处理与深度学习相结合以实现更好的诊断效果。基于此,对辛几何模态分解与ResNeXt神经网络分别进行了改进与优化,提出了一种基于优化辛几何模态分解与改进ResNeXt神经网络相结合的齿轮箱故障诊断模型。首先将采集到的振动信号经优化辛几何模态分解进行筛选重构,得到有效分量,之后送入改进ResNeXt神经网络进行故障的识别分类。通过使用渥太华大学滚动轴承变工况数据,验证了模型的可行性;通过使用动力传动故障诊断综合实验台(drivetrain dynamics simula, DDS)齿轮箱数据进行对比实验与抗噪性实验,验证了改动的有效性与模型的泛化性。 展开更多
关键词 辛几何模态分解 信号处理 ResNeXt 故障诊断
在线阅读 下载PDF
基于SGMD-ReOSELM和误差校正的日径流预报方法
5
作者 刘月馨 王雪峰 +3 位作者 王顺 宋德榕 张学东 张楚 《水电能源科学》 北大核心 2025年第10期23-27,共5页
由于径流过程的非线性和不稳定性,给预测工作带来难度。为了提高径流过程预测精度,提出将辛几何模态分解(SGMD)、正则化在线顺序极限学习机(ReOSELM)和误差校正结合的短期径流预测模型。该模型首先采用SGMD分解对原始流量数据进行分解,... 由于径流过程的非线性和不稳定性,给预测工作带来难度。为了提高径流过程预测精度,提出将辛几何模态分解(SGMD)、正则化在线顺序极限学习机(ReOSELM)和误差校正结合的短期径流预测模型。该模型首先采用SGMD分解对原始流量数据进行分解,降低原始序列的复杂度,并使用ReOSELM模型对分解数据进行预测并累加得到预测值;其次将真实值与预测值对比得到误差结果,再将误差结果组成新的数据集输入到ReOSELM模型中,得到误差预测结果;最后再使用误差预测结果与原始预测结果进行相加得到经过校正后的预测结果。以湘潭水文站点2008~2020年的日径流数据作为输入数据,并将该模型与LSTM、ReOSELM、EMD-ReOSELM、SGMD-ReOSELM模型进行对比分析。结果表明,所建立的模型有更好的预报精度,在径流过程预测领域具有良好的应用前景。 展开更多
关键词 日径流预测 辛几何模态分解 ReOSELM 误差校正
在线阅读 下载PDF
基于改进SOBI-SGMD算法的次同步振荡模态辨识研究
6
作者 郭成 杨宣铭 +1 位作者 杨灵睿 奚鑫泽 《电力系统保护与控制》 北大核心 2025年第14期100-110,共11页
针对次同步振荡(sub-synchronous oscillation, SSO)信号的准确辨识问题,提出了一种基于动态时间规整(dynamic time warping, DTW)算法改进的辛几何模态分解(symplectic geometry mode decomposition, SGMD)与二阶盲辨识(second order b... 针对次同步振荡(sub-synchronous oscillation, SSO)信号的准确辨识问题,提出了一种基于动态时间规整(dynamic time warping, DTW)算法改进的辛几何模态分解(symplectic geometry mode decomposition, SGMD)与二阶盲辨识(second order blind identification, SOBI)相结合的多通道次同步振荡辨识预警方法。首先,对SSO信号进行SGMD,经对角平均化与自适应重构后分解为初始辛几何模态分量(initial symplectic geometric mode components,ISGMCs),通过DTW算法计算ISGMCs间的最优距离值以度量序列的相似性,自适应筛选出具有独立模态的辛几何分量(symplectic geometry components, SGCs)。其次,将主导的SGCs作为观测信号输入SOBI算法矩阵中,并对观测矩阵联合近似对角化逼近,得到完整的SSO源估计信号,引入最小二乘法改进SOBI算法直接辨识SSO的振荡频率、衰减因子。最后,通过对理想算例与仿真算例的对比分析,验证了所提算法能够精确高效地辨识多通道次同步振荡信号。 展开更多
关键词 辛几何模态分解 二阶盲辨识 次同步振荡 多通道辨识 动态时间规整算法
在线阅读 下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断 被引量:2
7
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分解 改进多点最优最小熵解卷积调整 综合指标 白鹭群优化算法 故障诊断
在线阅读 下载PDF
基于时空相关性的短期光伏出力预测混合模型 被引量:3
8
作者 李豪 马刚 +2 位作者 李天宇 李伟康 沈静文 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期121-129,共9页
光伏功率预测是电网优化调度、稳定运行的关键基础,为了应对传统预测模型对潜在特性发掘不到位等问题,提出了基于时空相关性的短期光伏出力预测混合模型。它由图卷积神经网络GCN(graph convolutional neural network)、辛几何模态分解SG... 光伏功率预测是电网优化调度、稳定运行的关键基础,为了应对传统预测模型对潜在特性发掘不到位等问题,提出了基于时空相关性的短期光伏出力预测混合模型。它由图卷积神经网络GCN(graph convolutional neural network)、辛几何模态分解SGMD(symplectic geometry mode decomposition)、卷积神经网络CNN(convolutional neural network)和双向长短期记忆BiLSTM(bi-directional long short-term memory)神经网络组成。首先,建立区域光伏电站图结构,利用GCN推导出待测电站空间信息;其次,采用SGMD对输入特征进行模态分解,得到表现数据时序变化特征的多级模态子序列;最后,采用CNN-BiLSTM神经网络进行特征提取和光伏发电功率预测。实验结果表明,与多种组合预测模型相比,所提方法具有更高的预测精度。 展开更多
关键词 光伏发电短期预测 图卷积神经网络 辛几何模态分解 卷积神经网络 双向长短期记忆神经网络
在线阅读 下载PDF
自适应辛几何模态分解和短时能量差分因子在电能质量扰动检测中的应用 被引量:12
9
作者 李云峰 高云鹏 +2 位作者 蔡星月 朱彦卿 吴聪 《电工技术学报》 EI CSCD 北大核心 2022年第17期4390-4400,共11页
针对电网中电能质量扰动信号在强噪声环境下扰动时刻难以准确检测问题,该文提出一种基于自适应辛几何模态分解(SGMD)和短时能量差分因子的电能质量扰动检测算法。基于自适应SGMD改进传统SGMD的滤波重构环节,准确重构电能质量扰动信号,... 针对电网中电能质量扰动信号在强噪声环境下扰动时刻难以准确检测问题,该文提出一种基于自适应辛几何模态分解(SGMD)和短时能量差分因子的电能质量扰动检测算法。基于自适应SGMD改进传统SGMD的滤波重构环节,准确重构电能质量扰动信号,计算重构信号的短时能量,推导基于短时能量的无参自适应阈值算式,构建短时能量差分因子,据此开发基于虚拟仪器的电能质量扰动检测平台,以实现电能质量扰动准确实时检测。仿真和实测结果表明,该文提出的算法在噪声环境下对单一扰动、复合扰动与过零扰动,均能有效地检测扰动起止时刻,且能有效地克服扰动幅值波动对检测结果的影响,相较于现有检测算法,其测量结果更加快速准确。 展开更多
关键词 电能质量扰动 辛几何模态分解 短时能量 自适应阈值 抗噪性
在线阅读 下载PDF
一种基于改进辛几何模态分解的复合故障诊断方法 被引量:6
10
作者 杨宇 程健 +2 位作者 彭晓燕 潘海洋 程军圣 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期53-59,共7页
针对辛几何模态分解方法分析结果的不确定性,提出一种改进的辛几何模态分解方法.首先对原时间序列进行相空间变换,获得轨迹矩阵;然后通过辛几何相似变换求得特征值和对应的特征向量,并通过对角平均得到一系列的初始辛几何分量;最后采用... 针对辛几何模态分解方法分析结果的不确定性,提出一种改进的辛几何模态分解方法.首先对原时间序列进行相空间变换,获得轨迹矩阵;然后通过辛几何相似变换求得特征值和对应的特征向量,并通过对角平均得到一系列的初始辛几何分量;最后采用层次聚类方法对初始辛几何分量进行自适应重组,进而得到最终的聚类辛几何分量.实验结果表明:改进的辛几何模态分解方法可以有效地对旋转机械复合故障信号进行特征提取,提高故障诊断的准确性. 展开更多
关键词 层次聚类 改进的辛几何模态分解 故障诊断 旋转机械 信号处理
在线阅读 下载PDF
基于SGMD及LWOA-ELM的有限元模型修正 被引量:1
11
作者 赵宇 彭珍瑞 《计算力学学报》 CAS CSCD 北大核心 2023年第2期255-263,共9页
为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,... 为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,采用能量熵增量法确定重组辛几何分量(SGC)构成SGC矩阵。然后,利用LWOA对ELM的权值和阈值进行优化,提高ELM模型的预测效率,以LWOA-ELM为代理模型映射出待修正参数与SGC矩阵之间的关系。最后,以试验频响函数SGC矩阵与LWOA-ELM模型输出所得矩阵差值的F-范数最小为目标函数,结合LWOA求解待修正参数。算例分析表明,提出的方法用于有限元模型修正有较好的可行性和有效性。以SGC矩阵表征AFRF的修正方法,有较好的噪声鲁棒性;LWOA-ELM作为代理模型预测精度高,泛化能力强。 展开更多
关键词 模型修正 辛几何模态分解 能量熵增量法 极限学习机 鲸鱼优化算法
在线阅读 下载PDF
辛几何模态分解方法及其分解能力研究 被引量:13
12
作者 程正阳 王荣吉 潘海洋 《振动与冲击》 EI CSCD 北大核心 2020年第13期27-35,共9页
针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,提出了一种新的分析方法--辛... 针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,提出了一种新的分析方法--辛几何模态分解(Symplectic Geometry Mode Decomposition,SGMD)方法,该方法采用辛矩阵相似变换求解Hamilton矩阵的特征值,并利用其对应的特征向量重构辛几何分量(Symplectic Geometry Component,SGC),从而对复杂信号去噪的同时进行自适应分解,得到若干个SGC。通过仿真信号模型,研究了SGMD方法的分解性能、噪声鲁棒性,分析了分量信号的频率比、幅值比和初相位差对SGMD方法分解能力的影响。将SGMD方法应用于齿轮故障实验数据分析,结果表明SGMD方法能够有效地对待分解信号完成分解并剔除噪声信号。 展开更多
关键词 辛几何模态分解(SGMD) 辛矩阵相似变换 辛几何分量(SGC) 分解能力
在线阅读 下载PDF
基于自适应谐波分量提取的航空发动机附件传动系统变速故障诊断方法 被引量:8
13
作者 张光耀 王义 +2 位作者 李晓蒙 汤宝平 秦毅 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第5期10-20,共11页
针对当前基于无键相阶次跟踪(TLOT)的故障诊断所面临的转速谐波分量提取存在误差累积效应、瞬时相位难以准确估计等问题,本文提出了一种基于自适应谐波分量提取的航空发动机附件传动系统变速故障诊断方法。首先,通过低通滤波和降采样优... 针对当前基于无键相阶次跟踪(TLOT)的故障诊断所面临的转速谐波分量提取存在误差累积效应、瞬时相位难以准确估计等问题,本文提出了一种基于自适应谐波分量提取的航空发动机附件传动系统变速故障诊断方法。首先,通过低通滤波和降采样优化搜索空间并提升计算速度,在此基础上利用自相关平均周期进行自适应辛几何模态分解;其次,采用基于替代数据检验的伪谐波分量识别方法,完成转速谐波分量自适应分离结果的稀疏化表征。最后,基于转速谐波分量瞬时相位计算结果,对原始非平稳信号进行等角度重采样,利用傅里叶变换获取阶次谱以实现旋转机械装备的变速故障诊断。通过与典型信号分解方法对比,验证了所提方法的有效性;此外,对法国Safran某型航空发动机扫频试车过程中附件传动系统实测数据进行分析,所得阶次相对误差为0.059%,优于同类方法计算结果,进一步显示了其工程应用价值。 展开更多
关键词 无键相阶次跟踪 变速故障诊断 自适应辛几何模态分解 替代数据检验 扫频试车
在线阅读 下载PDF
迭代辛几何模态分解的高速列车轴承故障诊断 被引量:12
14
作者 林森 靳行 王延翠 《振动工程学报》 EI CSCD 北大核心 2020年第6期1324-1331,共8页
针对传统的SGMD方法存在的端点效应抑制和分解终止约束问题,提出了一种新的信号分解算法迭代辛几何模态分解(Iteration Symplectic Geometry Mode Decomposition,ISGMD)。ISGMD在SGMD的基础上,将迭代的方法引入分解过程中,确保每个分量... 针对传统的SGMD方法存在的端点效应抑制和分解终止约束问题,提出了一种新的信号分解算法迭代辛几何模态分解(Iteration Symplectic Geometry Mode Decomposition,ISGMD)。ISGMD在SGMD的基础上,将迭代的方法引入分解过程中,确保每个分量所提取的重构轨迹信号为独立分量,并提出了新的约束条件。ISGMD可以有效地分解时间序列信号并在没有任何定义参数的情况下消除噪声,抑制模态混叠与端点效应。数值仿真信号分析结果表明,所提出方法进行时间序列分解能够准确有效地分解分析信号。应用所提方法对高速列车轴承复合故障进行诊断,并与同类方法进行比较,结果表明所提方法可以更好地对轴承复合故障进行诊断。 展开更多
关键词 故障诊断 轮对轴承 辛几何模态分解 非线性系统信号
在线阅读 下载PDF
基于EMD和辛几何的运动员表面肌电信号分析与评价 被引量:2
15
作者 牛迅 曲峰 王宁 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期125-129,共5页
为对肌电信号的物理解释做出探索性的工作 ,本文运用经验模态分解和辛几何的方法 ,对不同等级短跑运动员腿部不同肌群的表面肌电信号进行处理分析。试验结果初步表明 ,应用上述 2种方法可对运动员等级和竞技状态做出有效的评价 ,而且 2... 为对肌电信号的物理解释做出探索性的工作 ,本文运用经验模态分解和辛几何的方法 ,对不同等级短跑运动员腿部不同肌群的表面肌电信号进行处理分析。试验结果初步表明 ,应用上述 2种方法可对运动员等级和竞技状态做出有效的评价 ,而且 2种方法对肌电信号处理结果的一致性将有助于进一步描述肌肉系统的生物力学特性。 展开更多
关键词 表面肌电信号 经验模态分解 辛几何
在线阅读 下载PDF
辛几何模态分解和广义形态分形维数的液压泵故障诊断 被引量:13
16
作者 郑直 王宝中 +1 位作者 刘佳鑫 姜万录 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第5期724-730,共7页
针对液压泵故障诊断问题,本文提出了一种基于辛几何模态分解和广义形态分形维数相结合的方法。对实测液压泵多模态故障振动信号进行分解;基于所提出的能量选取法,重构含有丰富运行特征信息的模态分量,并将其作为数据源;基于数据源提取,... 针对液压泵故障诊断问题,本文提出了一种基于辛几何模态分解和广义形态分形维数相结合的方法。对实测液压泵多模态故障振动信号进行分解;基于所提出的能量选取法,重构含有丰富运行特征信息的模态分量,并将其作为数据源;基于数据源提取,实现对液压泵不同故障的诊断。通过对比分析仿真和实测液压泵故障振动信号的试验结果,验证了该方法可以有效地诊断液压泵不同故障。 展开更多
关键词 液压泵 故障诊断 辛几何模态分解 广义形态分形维数 模态能量 特征提取 滑靴故障 松靴故障
在线阅读 下载PDF
SGMD-MOMEDA滚动轴承故障特征提取方法研究 被引量:2
17
作者 曹亚磊 杜应军 +3 位作者 韦广 董辛旻 高丽鹏 刘雨曦 《机械强度》 CAS CSCD 北大核心 2022年第6期1279-1285,共7页
针对滚动轴承的振动信号因非线性、非平稳且信噪比低而造成故障特征难以提取的问题,基于辛几何模态分解(Symplectic Geometry Mode Decomposition, SGMD)和多点最优最小熵解卷积调整(Multipoint Optimal Minimum Entropy Deconvolution ... 针对滚动轴承的振动信号因非线性、非平稳且信噪比低而造成故障特征难以提取的问题,基于辛几何模态分解(Symplectic Geometry Mode Decomposition, SGMD)和多点最优最小熵解卷积调整(Multipoint Optimal Minimum Entropy Deconvolution Adjusted, MOMEDA)理论,提出了SGMD-MOMEDA故障提取方法。首先,使用SGMD对故障信号进行分解,得到一列的辛几何分量(Symplectic Geometry Components, SGC);其次,依据相关性准则选取SGC进行信号重构,并确定MOMEDA分解参数;最后,使用MOMEDA方法对重构信号进行处理以提高信噪比,并利用包络谱分析对处理后的信号提取故障特征。仿真和实验结果表明,该方法能够准确地提取滚动轴承的故障频率,且与经验模态分解(Empirical Mode Decomposition, EMD)方法的对比结果显示了SGMD方法作为预处理其分解结果更加准确,在故障诊断领域具有较大的应用价值。 展开更多
关键词 辛几何模态分解 辛几何分量 多点最优最小熵解卷积调整 特征提取 滚动轴承故障诊断
在线阅读 下载PDF
基于SGMD敏感参数和KFCMC的滚动轴承故障诊断方法 被引量:2
18
作者 郑直 高崇一 +1 位作者 宋金超 姜万录 《机床与液压》 北大核心 2020年第11期189-193,206,共6页
针对滚动轴承的内圈和外圈故障诊断问题,提出了一种基于辛几何模态分解(SGMD)、敏感参数和核模糊C均值聚类(KFCMC)相结合的方法。基于SGMD研究了实际测量的液压泵多模态故障振动信号;基于所提出的相似性分析法,将含有丰富运行特征信息... 针对滚动轴承的内圈和外圈故障诊断问题,提出了一种基于辛几何模态分解(SGMD)、敏感参数和核模糊C均值聚类(KFCMC)相结合的方法。基于SGMD研究了实际测量的液压泵多模态故障振动信号;基于所提出的相似性分析法,将含有丰富运行特征信息的模态分量进行重构,并将其作为数据源;基于数据源提取时域和频域参数,并利用流行学习法筛选出峭度、裕度指标和峰值指标等敏感参数作为特征向量;利用KFCMC实现对内圈和外圈不同故障的诊断。通过对滚动轴承内、外圈故障振动信号的仿真和实测,验证了该方法可以有效地诊断滚动轴承不同故障。 展开更多
关键词 辛几何模态分解 滚动轴承 故障诊断 敏感参数
在线阅读 下载PDF
时频能量谱与VGG16结合的车轮扁疤损伤程度估计方法 被引量:1
19
作者 李大柱 牛江 +1 位作者 梁树林 池茂儒 《中国机械工程》 EI CAS CSCD 北大核心 2023年第16期1907-1914,共8页
为了实现对运营中车辆车轮扁疤损伤程度的实时精准监测,提出了一种时频能量谱与VGG16卷积神经网络相结合的车轮扁疤损伤程度估计方法,该方法通过对车辆运营中轴箱振动加速度信号的分析处理来实时定量估计车轮扁疤的损伤程度。建立了车... 为了实现对运营中车辆车轮扁疤损伤程度的实时精准监测,提出了一种时频能量谱与VGG16卷积神经网络相结合的车轮扁疤损伤程度估计方法,该方法通过对车辆运营中轴箱振动加速度信号的分析处理来实时定量估计车轮扁疤的损伤程度。建立了车辆轨道刚柔耦合系统动力学模型和车轮扁疤数学模型,仿真计算不同扁疤损伤工况下的车辆轴箱振动响应。运用形态学滤波器以及完全噪声辅助集合经验模态分解结合Wigner-Ville分布的时频分析方法,将轴箱振动加速度信号滤波降噪后表达在时频能量谱中。构造了VGG16卷积神经网络模型,通过大量车轮扁疤故障数据的时频能量谱构造的训练集来训练VGG16模型。随机仿真若干车轮扁疤工况,对训练完善的VGG16模型进行测试验证。仿真试验表明,运用时频能量谱与VGG16模型结合的方法能准确地估计运营中车辆的车轮扁疤损伤程度,估计误差在1.6 mm内。 展开更多
关键词 车轮扁疤 形态学滤波 完全噪声辅助聚合经验模态分解 WIGNER-VILLE分布 VGG16 时频能量谱
在线阅读 下载PDF
基于SGMD-Autogram的液压泵故障诊断方法研究 被引量:13
20
作者 郑直 李显泽 +1 位作者 朱勇 王宝中 《振动与冲击》 EI CSCD 北大核心 2020年第23期234-241,共8页
辛几何模态分解方法(Symplectic Geometry Mode Decomposition,SGMD)存在特征信息分布过于分散问题、Autogram方法中的最大重复离散小波变换(Maximal Overlap Discrete Wavelet Packet Transform,MODWPT)存在特征提取能力不足问题,针对... 辛几何模态分解方法(Symplectic Geometry Mode Decomposition,SGMD)存在特征信息分布过于分散问题、Autogram方法中的最大重复离散小波变换(Maximal Overlap Discrete Wavelet Packet Transform,MODWPT)存在特征提取能力不足问题,针对上述两问题,提出了基于SGMD-Autogram的新方法。对实测液压泵多模态故障振动信号进行SGMD分解;针对分解后产生的特征信息分布过于分散问题,提出基于最大无偏自相关谱峭度法,筛选含有丰富运行特征信息的模态分量为数据源,进而取代MODWPT,实现最优故障特征提取;对数据源进行阈值处理,并基于频谱实现对液压泵故障的诊断。通过对比分析仿真和实测液压泵斜盘故障振动信号,验证了该方法可以有效地诊断斜盘故障。 展开更多
关键词 液压泵 故障诊断 辛几何模态分解 Autogram
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部