The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
This paper presents an adaptive gain,finite-and fixedtime convergence super-twisting-like algorithm based on a revised barrier function,which is robust to perturbations with unknown bounds.It is shown that this algori...This paper presents an adaptive gain,finite-and fixedtime convergence super-twisting-like algorithm based on a revised barrier function,which is robust to perturbations with unknown bounds.It is shown that this algorithm can ensure a finite-and fixed-time convergence of the sliding variable to the equilibrium,no matter what the initial conditions of the system states are,and maintain it there in a predefined vicinity of the origin without violation.Also,the proposed method avoids the problem of overestimation of the control gain that exists in the current fixed-time adaptive control.Moreover,it shows that the revised barrier function can effectively reduce the computation load by obviating the need of increasing the magnitude of sampling step compared with the conventional barrier function.This feature will be beneficial when the algorithm is implemented in practice.After that,the estimation of the fixed convergence time of the proposed method is derived and the impractical requirement of the preceding fixed-time adaptive control that the adaptive gains must be large enough to engender the sliding mode at time t=0 is discarded.Finally,the outperformance of the proposed method over the existing counterpart method is demonstrated with a numerical simulation.展开更多
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene...An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.展开更多
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi...There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.展开更多
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit...The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Glo...To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.展开更多
In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information ...In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.展开更多
Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the probl...Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.展开更多
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona...To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.展开更多
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si...Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
This paper provides a modified fast adaptive algorithm for digital beamforming. It is analgorithm with strict constraint minimum power sampling matrix gradient (CSMG). It has merits ofboth traditional sampling mains g...This paper provides a modified fast adaptive algorithm for digital beamforming. It is analgorithm with strict constraint minimum power sampling matrix gradient (CSMG). It has merits ofboth traditional sampling mains gradient (SMG) and strictly constrained minimum power adaptivealgorithm. 16-element uniform circular array is selected. Some results of computer simulation aregiven. The results indicate that the beam direction will change with constraint angle and can beadaptable to adjust zero very well. The algorithm is fast convergent.展开更多
For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beam...For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.展开更多
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ...This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal pro...Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability.展开更多
The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stres...The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stressed in studying the value of its application by realizing it in MMS.展开更多
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘This paper presents an adaptive gain,finite-and fixedtime convergence super-twisting-like algorithm based on a revised barrier function,which is robust to perturbations with unknown bounds.It is shown that this algorithm can ensure a finite-and fixed-time convergence of the sliding variable to the equilibrium,no matter what the initial conditions of the system states are,and maintain it there in a predefined vicinity of the origin without violation.Also,the proposed method avoids the problem of overestimation of the control gain that exists in the current fixed-time adaptive control.Moreover,it shows that the revised barrier function can effectively reduce the computation load by obviating the need of increasing the magnitude of sampling step compared with the conventional barrier function.This feature will be beneficial when the algorithm is implemented in practice.After that,the estimation of the fixed convergence time of the proposed method is derived and the impractical requirement of the preceding fixed-time adaptive control that the adaptive gains must be large enough to engender the sliding mode at time t=0 is discarded.Finally,the outperformance of the proposed method over the existing counterpart method is demonstrated with a numerical simulation.
文摘An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.
基金Project(60574030) supported by the National Natural Science Foundation of ChinaKey Project(60634020) supported by the National Natural Science Foundation of China
文摘There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.
基金Project(50905037) supported by the National Natural Science Foundation of ChinaProject(20092304120014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+2 种基金 Project(20100471021) supported by the China Postdoctoral Science Foundation Project(LBH-Q09134) supported by Heilongjiang Postdoctoral Science-Research Foundation,China Project (HEUFT09013) supported by the Foundation of Harbin Engineering University,China
文摘The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
文摘To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.
基金Project(61071162) supported by the National Natural Science Foundation of China
文摘In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.
基金supported by the National Natural Science Foundation of China(51467013)
文摘Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (60874070) supported by the National Natural Science Foundation of China
文摘To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.
基金Project(52072412)supported by the National Natural Science Foundation of China。
文摘Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
文摘This paper provides a modified fast adaptive algorithm for digital beamforming. It is analgorithm with strict constraint minimum power sampling matrix gradient (CSMG). It has merits ofboth traditional sampling mains gradient (SMG) and strictly constrained minimum power adaptivealgorithm. 16-element uniform circular array is selected. Some results of computer simulation aregiven. The results indicate that the beam direction will change with constraint angle and can beadaptable to adjust zero very well. The algorithm is fast convergent.
文摘For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.
基金supported by the National Natural Science Foundation of China(61172159)
文摘This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
基金Sponsored by National Nature Science Foundation of China (60575013)
文摘Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability.
文摘The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stressed in studying the value of its application by realizing it in MMS.