期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
利用混合深度学习算法的时空风速预测 被引量:1
1
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于动态自适应门控图卷积网络的交通拥堵预测
2
作者 王庆荣 高桓伊 +2 位作者 朱昌锋 何润田 慕壮壮 《华南理工大学学报(自然科学版)》 北大核心 2025年第9期31-47,共17页
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面... 随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。 展开更多
关键词 交通拥堵预测 图神经网络 动态自适应门控 聚类算法 门控时间卷积网络
在线阅读 下载PDF
具有特征交互适应的3D双手网格重建方法
3
作者 刘佳 张家辉 陈大鹏 《信号处理》 北大核心 2025年第7期1291-1302,共12页
从单张RGB图像中实现双手的3D交互式网格重建是一项极具挑战性的任务。由于双手之间的相互遮挡以及局部外观相似性较高,导致部分特征提取不够准确,从而丢失了双手之间的交互信息并使重建的手部网格与输入图像出现不对齐等问题。为了解... 从单张RGB图像中实现双手的3D交互式网格重建是一项极具挑战性的任务。由于双手之间的相互遮挡以及局部外观相似性较高,导致部分特征提取不够准确,从而丢失了双手之间的交互信息并使重建的手部网格与输入图像出现不对齐等问题。为了解决上述问题,本文首先提出一种包含两个部分的特征交互适应模块,第一部分特征交互在保留左右手分离特征的同时生成两种新的特征表示,并通过交互注意力模块捕获双手的交互特征;第二部分特征适应则是将此交互特征利用交互注意力模块适应到每只手,为左右手特征注入全局上下文信息。其次,引入三层图卷积细化网络结构用于精确回归双手网格顶点,并通过基于注意力机制的特征对齐模块增强顶点特征和图像特征的对齐,从而增强重建的手部网格和输入图像的对齐。同时提出一种新的多层感知机结构,通过下采样和上采样操作学习多尺度特征信息。最后,设计相对偏移损失函数约束双手的空间关系。在InterHand2.6M数据集上的定量和定性实验表明,与现有的优秀方法相比,所提出的方法显著提升了模型性能,其中平均每关节位置误差(Mean Per Joint Position Error,MPJPE)和平均每顶点位置误差(Mean Per Vertex Position Error,MPVPE)分别降低至7.19 mm和7.33 mm。此外,在RGB2Hands和EgoHands数据集上进行泛化性实验,定性实验结果表明所提出的方法具有良好的泛化能力,能够适应不同环境背景下的手部网格重建。 展开更多
关键词 双手重建 注意力机制 特征交互适应 特征对齐 图卷积网络
在线阅读 下载PDF
面向自闭症辅助诊断的知识蒸馏混合域适应方法 被引量:1
4
作者 顿家乐 王骏 +2 位作者 彭汉琛 李俊诚 施俊 《智能系统学报》 北大核心 2025年第1期81-90,共10页
使用领域自适应方法构建自闭症辅助诊断模型时,通常会面临目标域中混合了来自多个影像中心的样本的情况(即混合目标域),这使得目标域中包含了多个分布。传统领域自适应方法只能处理目标域包含单一分布的情况,而无法直接处理混合目标域... 使用领域自适应方法构建自闭症辅助诊断模型时,通常会面临目标域中混合了来自多个影像中心的样本的情况(即混合目标域),这使得目标域中包含了多个分布。传统领域自适应方法只能处理目标域包含单一分布的情况,而无法直接处理混合目标域的情况。为此,本文提出了一种基于知识蒸馏的混合目标领域自适应模型。具体地,将图卷积网络(graph convolutional network,GCN)作为教师模型,多层感知机(multilayer perceptron,MLP)作为学生模型。针对混合目标域数据分布的多样性,提出了一种新型的对抗知识蒸馏机制,通过对抗训练特征提取器和域鉴别器来减少源域和目标域之间的分布差异;与此同时,使用知识蒸馏,使教师模型在领域自适应的同时将知识传递给学生模型。在ABIDE数据集上验证了算法的有效性,本文方法一方面有效降低了网络的复杂度,另一方面,在混合目标域的分类准确率达到69.17%,与其他领域自适应方法相比效果更好。 展开更多
关键词 自闭症谱系障碍 领域自适应 混合目标域 知识蒸馏 图卷积网络 教师网络 学生网络 对抗学习
在线阅读 下载PDF
基于自适应差异化图卷积的图注意力网络表示学习算法
5
作者 吴誉兰 舒建文 《现代电子技术》 北大核心 2025年第2期51-54,共4页
为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键... 为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键相邻采样方式优先挖掘重要节点并保留随机性,完成关键邻居节点的采样;然后结合图注意力网络,通过局部关注和自适应学习权重分配将关键邻居节点特征聚合到自身节点上,增强节点的特征表示;最后经网络训练,进一步增强网络表示学习能力。实验结果表明,所提出的算法优化了节点聚合程度和边界清晰度,提高了节点分类的准确性和可视化效果,并且通过关注二阶邻居和使用双头注意力,在网络表示学习上也展现出了优越性能。 展开更多
关键词 网络表示学习 图卷积网络 自适应差异化机制 节点采样 特征聚合 网络训练 图注意力网络
在线阅读 下载PDF
基于自适应时空图卷积网络的航空发动机剩余寿命预测
6
作者 许丹阳 尚洁 +2 位作者 蒋琛 邱浩波 高亮 《计算机集成制造系统》 北大核心 2025年第6期2165-2177,共13页
为了深入挖掘传感器监测信号的时间域和空间域特征,全面反映健康状态进而提高故障预测精度,提出一种基于自适应时空图卷积网络(ASTGCN)的航空发动机剩余使用寿命(RUL)预测方法。首先以基于互信息的静态邻接矩阵为基础,结合参数可学习的... 为了深入挖掘传感器监测信号的时间域和空间域特征,全面反映健康状态进而提高故障预测精度,提出一种基于自适应时空图卷积网络(ASTGCN)的航空发动机剩余使用寿命(RUL)预测方法。首先以基于互信息的静态邻接矩阵为基础,结合参数可学习的动态邻接矩阵表示方法建立自适应邻接矩阵,自动调整传感器节点的空间关联,高质量构建航空发动机健康监测场景下的图结构数据;其次建立时空图卷积网络模块,分别利用一维和图卷积网络同步学习监测信号的时间和空间依赖关系,捕捉监测数据的动态时空相关性;最后将全连接层用于退化特征融合和RUL预测。采用公开的航空发动机退化数据集验证了ASTGCN的有效性和先进性。 展开更多
关键词 航空发动机 剩余使用寿命预测 数据驱动 时空图卷积网络 自适应邻接矩阵
在线阅读 下载PDF
融合多图卷积的表格学习模型
7
作者 王秋雨 赵韦鑫 +2 位作者 颜怀柏 杨炬龙 彭舰 《计算机工程与设计》 北大核心 2025年第9期2570-2577,共8页
针对现有的表格学习方法在平衡特征与实例关系、构建图表示过程复杂且关注角度单一等问题,本文提出一种基于图神经网络的表格学习模型。该模型分别从表格数据的行和列角度初始化特征嵌入图与实例交互图,融合了数据的局部和全局信息。模... 针对现有的表格学习方法在平衡特征与实例关系、构建图表示过程复杂且关注角度单一等问题,本文提出一种基于图神经网络的表格学习模型。该模型分别从表格数据的行和列角度初始化特征嵌入图与实例交互图,融合了数据的局部和全局信息。模型通过结合图卷积和图注意力的双核卷积模块增强节点嵌入表示,利用基于动态门控的层级池化模块降低图复杂度并保留重要节点差异信息,同时引入自适应融合模块平衡特征与实例关系并提升模型准确性。在5个公开数据集上的实验结果表明,模型性能提升了1~3个百分点;大量消融实验验证了各模块对提升模型学习能力的重要性。 展开更多
关键词 表格学习 特征嵌入 实例交互 图卷积网络 图注意力网络 层级池化 自适应融合
在线阅读 下载PDF
基于有向超图自适应卷积的链接预测模型
8
作者 赵文博 马紫彤 杨哲 《计算机应用》 北大核心 2025年第1期15-23,共9页
图神经网络(GNN)为链接预测提供了多样化的解决方案,但由于普通图的结构限制,目前的相关模型在充分利用顶点间的高阶及不对称信息方面存在明显的不足。针对以上问题,提出一种基于有向超图自适应卷积的链接预测模型。首先,使用有向超图... 图神经网络(GNN)为链接预测提供了多样化的解决方案,但由于普通图的结构限制,目前的相关模型在充分利用顶点间的高阶及不对称信息方面存在明显的不足。针对以上问题,提出一种基于有向超图自适应卷积的链接预测模型。首先,使用有向超图结构更充分地表示顶点间的高阶和方向信息,兼具超图和有向图的优势;其次,有向超图自适应卷积采用自适应信息传播方式替代传统有向超图中的定向信息传播方式,从而解决了有向超边尾部顶点不能有效更新嵌入的问题,同时解决多层卷积导致的顶点过度平滑问题。在Citeseer数据集上基于显式顶点特征的实验结果显示,在链接预测任务上,相较于有向超图神经网络(DHNN)模型,所提模型的ROC(Receiver Operating Characteristic)曲线下面积(AUC)指标提升了2.23个百分点,平均精度(AP)提升了1.31个百分点。因此,所提模型可以充分表达顶点间的关系,并有效提高链接预测任务的性能。 展开更多
关键词 图神经网络 有向超图 链接预测 超图卷积 表示学习 自适应卷积
在线阅读 下载PDF
结合互注意力空间自适应和特征对集成判别的细粒度图像分类
9
作者 李志欣 匡文兰 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期69-82,共14页
细粒度图像具有类间差异小和类内区别大的特点,许多研究利用Vision Transformer挖掘关键区域特征来提升细粒度图像分类的精度,但其仍存在2个主要问题:首先,网络挖掘关键性分类线索时背景区域也考虑在内,给模型带来额外噪声干扰;其次,输... 细粒度图像具有类间差异小和类内区别大的特点,许多研究利用Vision Transformer挖掘关键区域特征来提升细粒度图像分类的精度,但其仍存在2个主要问题:首先,网络挖掘关键性分类线索时背景区域也考虑在内,给模型带来额外噪声干扰;其次,输入的图像局部嵌入特征之间欠缺空间联系,模型缺乏物体结构认知能力,导致提取的类别特征不准确。针对此问题,本文提出互注意力空间自适应和特征对集成判别2个模块。先通过互注意力空间自适应模块学习不同嵌入层的互注意力增强权重,用于选择更佳的判别性区域,通过图卷积网络自适应学习不同区域的邻接关系;再利用特征对集成判别模块考虑图像对之间的线索交互,减少细粒度图像间的混淆,在令牌特征增强策略下得出最终预测结果。本文方法在CUB-200-2011、Stanford Dogs和NABirds等3个基准数据集上测试准确率分别达到92.5%、93.3%和91.8%,优于现有许多先进方法。 展开更多
关键词 细粒度图像分类 互注意力空间自适应 特征对集成判别 图卷积网络 令牌特征增强
在线阅读 下载PDF
基于多头注意力时空图卷积网络的交通事故预测
10
作者 姜天豪 王瑞 《上海大学学报(自然科学版)》 北大核心 2025年第4期678-690,共13页
提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络... 提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络的连接权重进行动态调整,提升了对空间依赖性的刻画能力.结果表明,该模型在伦敦道路网络数据集上的表现优于已有模型,在多个指标上显著提升了预测精度. 展开更多
关键词 交通事故预测 时空图卷积网络 多头注意力机制 自适应邻接矩阵
在线阅读 下载PDF
基于领域对抗图注意力网络的轴承跨域故障诊断
11
作者 安冬 韩鹏举 +2 位作者 李宇鹏 李旺 邵萌 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第2期280-288,共9页
针对轴承跨域故障诊断任务中因转速跨度大而导致故障特征差异显著,难以有效建模和对齐复杂数据特征的问题,提出一种基于领域对抗图注意力网络(DA-GAT)的模型以提高故障诊断准确率。首先将轴承振动信号数据经基于GC模块的特征提取网络处... 针对轴承跨域故障诊断任务中因转速跨度大而导致故障特征差异显著,难以有效建模和对齐复杂数据特征的问题,提出一种基于领域对抗图注意力网络(DA-GAT)的模型以提高故障诊断准确率。首先将轴承振动信号数据经基于GC模块的特征提取网络处理,然后将提取到的数据特征输入自适应边缘生成模块并构建实例图,再通过图注意力网络进行多尺度卷积建模;采用分类器和域鉴别器分别对信号特征的类别信息和领域信息进行建模,利用最大均值差异(MMD)度量不同域实例图的数据结构差异,并最大化源域和目标域之间的特征一致性实现源域和目标域的对齐。宽转速跨度诊断实验的结果表明,DA-GAT的诊断准确率显著优于JAN、MKMMD、CORAL和DANN等方法,其平均准确率达到76.8%,排除低转速故障特征不明显的工况,准确率达94.4%以上。DA-GAT模型能够充分提取数据结构信息,更有效地捕捉和对齐源域和目标域的特征差异,提高了轴承跨域故障诊断的准确性和鲁棒性。 展开更多
关键词 故障诊断 迁移学习 滚动轴承 图卷积神经网络 无监督领域自适应
在线阅读 下载PDF
基于多尺度自适应时空图卷积网络与BERT模型的多节点短期负荷预测
12
作者 吴兴扬 戴剑丰 《电网技术》 北大核心 2025年第9期3756-3766,I0072-I0075,共15页
“双碳”目标旨在推动能源转型与减排,新型电力系统作为关键,促进清洁能源接入与利用,减碳效果显著。但其多元化负荷结构增大了预测难度。为应对“双碳”要求,解决新型电力系统中多节点负荷预测的复杂时空依赖性和非线性问题,文章提出... “双碳”目标旨在推动能源转型与减排,新型电力系统作为关键,促进清洁能源接入与利用,减碳效果显著。但其多元化负荷结构增大了预测难度。为应对“双碳”要求,解决新型电力系统中多节点负荷预测的复杂时空依赖性和非线性问题,文章提出了一种基于多尺度自适应时空图卷积网络(adaptive spatio-temporal graph convolutional network,ASTGCN)与基于Transformer的双边编码器表示(bidirectional encoder representations from transformers,BERT)模型的多节点短期负荷预测方法。首先,采用Prophet算法对负荷数据进行拟合分解,获取不同尺度下的负荷数据分量,并与强相关的天气数据共同构建多元数据集;其次,引入可膨胀的滑动时空窗口和时空图卷积算子构建ASTGCN,同时捕捉空间和时间上的复杂依赖关系,并引入BERT模型对时间序列数据进行编码,利用其强大的处理能力来捕捉负荷数据中的长期依赖性;最后,用门控融合网络对两个模型进行融合。基于美国纽约州的公开数据集进行测试,单日和单周的测试结果均表明所提模型不仅能有效挖掘节点的耦合特性,还能补充挖掘中长期时序特征,并显著提升预测精度,降低预测误差。 展开更多
关键词 Prophet算法 自适应时空图卷积网络 BERT 门控融合网络 多节点负荷预测
在线阅读 下载PDF
用于交通流量预测的多图扩散注意力网络
13
作者 王泉 陆啟想 施珮 《计算机应用》 北大核心 2025年第5期1472-1479,共8页
当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MG... 当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MGDAM)和时间注意力模块。首先,使用自适应时空嵌入生成器构建动态的时空信息;其次,采用最大互信息系数(MIC)矩阵与自适应矩阵挖掘细粒度的空间信息,并利用全局空间注意力机制挖掘动态的空间相关性;最后,使用时间注意力模块提取非线性的时间相关性,并通过3个模块的结合实现时空相关性的有效提取。在PEMS08数据集上的实验结果表明,MGDAN在1 h内的平均绝对误差(MAE)相较于时空自编码器(ST_AE)和时空身份信息(STID)模型分别降低了19.34%和5.74%,且整体预测性能均优于9个基线模型,能够精准地进行中长期交通流量预测,为城市交通疏导提供理论依据。 展开更多
关键词 交通流量预测 时空模型 自适应时空嵌入 图卷积网络 注意力网络
在线阅读 下载PDF
基于图卷积的自适应特征融合MRI脑肿瘤分割方法
14
作者 张野 张睦卿 +1 位作者 袁学刚 牛大田 《河北科技大学学报》 北大核心 2025年第4期395-404,共10页
针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷... 针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷积推理模块,捕获额外的远程上下文特征;在编解码器中引入动态蛇形卷积(dynamic snake convolution, DSConv)能更精准地契合肿瘤形态各异的特点,提高边缘特征提取能力,从而有效提升分割精度;在解码器中引入自适应空间特征融合(adaptive spatial feature fusion, ASFF)模块,通过整合多个编码器块捕获的语义信息提升特征融合效果。在公开的BraTS 2019—2021数据集上的评估表明,整个肿瘤、肿瘤核心和增强肿瘤的Dice值分别为90.70%/90.70%/91.00%、84.90%/84.00%/88.80%和77.30%/77.40%/82.50%,证明了ASGU-Net在脑肿瘤分割任务中的有效性。ASGU-Net可有效解决全局信息捕获不足和特征融合不充分的问题,为脑肿瘤高精度自动化分割提供了参考。 展开更多
关键词 计算机神经网络 脑肿瘤分割 三维U-Net 图卷积推理瓶颈层 动态蛇形卷积 自适应空间特征融合
在线阅读 下载PDF
基于动态自适应图神经网络的电动汽车充电负荷预测 被引量:7
15
作者 张延宇 张智铭 +2 位作者 刘春阳 张西镚 周毅 《电力系统自动化》 EI CSCD 北大核心 2024年第7期86-93,共8页
电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自... 电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自适应相关图结合生成具有时空关联性的综合特征表达式,以捕获充电站负荷的波动性;然后,将提取的特征输入到时空卷积层,捕获时间和空间之间的耦合关系;最后,通过切比雪夫多项式图卷积与多尺度时间卷积提升模型耦合长时间序列之间的能力。以Palo Alto数据集为例,与现有方法相比,所提算法在4种波动情况下的平均预测误差大幅降低。 展开更多
关键词 电动汽车 负荷预测 时空关联特征 自适应图神经网络 注意力机制 时空卷积层
在线阅读 下载PDF
变工况下动态卷积域对抗图神经网络故障诊断 被引量:1
16
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 图神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
在线阅读 下载PDF
融合自适应周期与兴趣量因子的轻量级GCN推荐 被引量:2
17
作者 钱忠胜 叶祖铼 +3 位作者 姚昌森 张丁 黄恒 秦朗悦 《软件学报》 EI CSCD 北大核心 2024年第6期2974-2998,共25页
推荐系统在成熟的数据挖掘技术推动下,已能高效地利用评分数据、行为轨迹等显隐性信息,再与复杂而先进的深度学习技术相结合,取得了很好的效果.同时,其应用需求也驱动着对基础数据的深度挖掘与利用,以及对技术要求的减负成为一个研究热... 推荐系统在成熟的数据挖掘技术推动下,已能高效地利用评分数据、行为轨迹等显隐性信息,再与复杂而先进的深度学习技术相结合,取得了很好的效果.同时,其应用需求也驱动着对基础数据的深度挖掘与利用,以及对技术要求的减负成为一个研究热点.基于此,提出一种利用GCN(graph convolutional network)方法进行深度信息融合的轻量级推荐模型LG_APIF.该模型结合行为记忆,通过艾宾浩斯遗忘曲线模拟用户兴趣变化过程,采用线性回归等相对轻量的传统方法挖掘项目的自适应周期等深度信息;分析用户当前的兴趣分布,计算项目的兴趣量,以获取用户的潜在兴趣类型;构建用户-类型-项目三元组的图结构,并结合减负后的GCN技术来生成最终的项目推荐列表.实验验证所提方法的有效性,通过与8个经典模型在Last.fm,Douban,Yelp,MovieLens数据集中的对比,表明该方法在Precision,Recall及NDCG指标上都得到良好改善,其中,Precision平均提升2.11%,Recall平均提升1.01%,NDCG平均提升1.48%. 展开更多
关键词 行为记忆 自适应周期 兴趣量因子 图卷积网络 推荐系统
在线阅读 下载PDF
基于双流自适应图卷积网络的管制员睡岗行为识别 被引量:2
18
作者 王超 王志锋 李雯清 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期596-601,共6页
为识别空中交通管制员的睡岗行为,减少管制差错,保障航空器飞行安全,提出了一种基于双流自适应图卷积网络的管制员睡岗行为识别方法。该方法设计双流网络分别处理管制员骨架的一阶信息和二阶信息,实现对骨架数据的充分提取;通过自适应... 为识别空中交通管制员的睡岗行为,减少管制差错,保障航空器飞行安全,提出了一种基于双流自适应图卷积网络的管制员睡岗行为识别方法。该方法设计双流网络分别处理管制员骨架的一阶信息和二阶信息,实现对骨架数据的充分提取;通过自适应学习的骨骼拓扑连接矩阵,挖掘管制员不同关节之间的功能连接关系;同时在卷积层引入时空通道注意力机制,增强管制员睡岗行为识别模型在时间、空间、通道3个方向提取重要信息的能力。仿真结果表明,该方法能有效识别管制员3种睡岗行为,相较于传统的时空图卷积网络,识别准确率提高了3.08百分点,达到95.03%,可以提高民航运行安全管理水平。 展开更多
关键词 安全社会工程 睡岗行为 空中交通管制员 自适应图卷积网络 行为识别
在线阅读 下载PDF
融合自注意力和图卷积的多视图群组推荐 被引量:1
19
作者 王永贵 王芯茹 《计算机工程与应用》 CSCD 北大核心 2024年第8期287-295,共9页
为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群... 为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群组、用户和项目三者之间的高阶交互信息,缓解数据稀疏问题,增强群组表示建模过程;对于项目级视图,利用基于二分图的图卷积神经网络来学习群组偏好向量以及项目嵌入;进一步提出了自适应融合组件来动态调整不同视图权重,得到最终的群组偏好向量。在两个真实数据集上的实验结果表明,与基线模型相比,MVGR模型的命中率(HR)和归一化折损累计增益(NDCG)在Mafengwo数据集上平均提高了8.89个百分点和1.56个百分点,在CAMRa2011数据集上平均提高了2.79个百分点和2.7个百分点。 展开更多
关键词 群组推荐 自注意力机制 图卷积神经网络 自适应融合
在线阅读 下载PDF
基于时空特征挖掘的特高压变压器热状态参量预测方法 被引量:9
20
作者 林蔚青 缪希仁 +4 位作者 肖洒 江灏 卢燕臻 邱星华 阴存翊 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1649-1661,I0033,共14页
热状态参量预测是特高压变压器绝缘老化评估及故障预警的重要技术方法。然而,现有预测方法侧重高维时间序列分析以构建数据驱动模型,未计及设备内部温度潜在的空间变化规律,为此,提出一种基于时空特征挖掘的特高压变压器热状态参量预测... 热状态参量预测是特高压变压器绝缘老化评估及故障预警的重要技术方法。然而,现有预测方法侧重高维时间序列分析以构建数据驱动模型,未计及设备内部温度潜在的空间变化规律,为此,提出一种基于时空特征挖掘的特高压变压器热状态参量预测方法。首先,综合考虑多源数据间的相关度与冗余度,提出组合特征筛选策略寻找最优特征子集;其次,结合热状态参量的最优特征子集及相关系数,构建面向热状态参量预测的时空图数据;最后,建立双重自适应图卷积门控循环单元(dualadaptivegraphconvolutiongate recurrent unit,DA-GCGRU)模型,采用节点自适应模块强化油箱内不同部位温度变化趋势的拟合,以适应特定温升趋势;采用图自适应模块自主学习热状态参量的空间温度分布关联性,以推断空间映射关系。实验结果表明,该方法可深度挖掘特高压变压器内部温度的时空变化特性,准确预测绕组温度和顶层油温的变化趋势,具有较好的鲁棒性和泛化性。 展开更多
关键词 特高压变压器 绕组温度 顶层油温 自适应 图卷积网络 门控循环单元
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部