期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
利用混合深度学习算法的时空风速预测 被引量:1
1
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
2
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
基于改进图卷积的多站点海浪高度预测方法
3
作者 卢鹏 王慧 +1 位作者 王振华 郑宗生 《海洋测绘》 北大核心 2025年第4期37-42,共6页
海浪高度的变化不仅随时间变化,还受周围海域的影响。针对现有方法仅关注单一站点的时序特征,缺乏对同一区域内不同站点间海浪高度的时空信息提取问题,提出一种改进图卷积的多站点海浪高度预测模型SD-STSGCN。首先采用基于密度的K-mean... 海浪高度的变化不仅随时间变化,还受周围海域的影响。针对现有方法仅关注单一站点的时序特征,缺乏对同一区域内不同站点间海浪高度的时空信息提取问题,提出一种改进图卷积的多站点海浪高度预测模型SD-STSGCN。首先采用基于密度的K-means聚类对站点分组;其次提出缩放距离因子构建邻接矩阵以动态调整权重;最后结合扩张卷积的时空同步图卷积模块捕捉时空特征,非线性映射输出各组站点未来时段的海浪高度预测结果。在覆盖多维度场景的44个站点上进行大区域实验,结果表明,相比于LSTM和TCN等模型,SD-STSGCN的预测效果最好,该方法有效挖掘了多站点时空相关性,为海浪高度预测提供了有效的补充方案。 展开更多
关键词 海浪高度预测 多站点预测 时空同步图卷积 时空相关性 邻接矩阵
在线阅读 下载PDF
基于动态自适应门控图卷积网络的交通拥堵预测
4
作者 王庆荣 高桓伊 +2 位作者 朱昌锋 何润田 慕壮壮 《华南理工大学学报(自然科学版)》 北大核心 2025年第9期31-47,共17页
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面... 随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。 展开更多
关键词 交通拥堵预测 图神经网络 动态自适应门控 聚类算法 门控时间卷积网络
在线阅读 下载PDF
计及动态时空相关性的多风电场短期功率预测
5
作者 李丹 黄烽云 +3 位作者 杨帆 唐建 罗娇娇 方泽仁 《电力系统及其自动化学报》 北大核心 2025年第2期1-9,共9页
针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征... 针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征;然后用时空同步图卷积层聚合输入时窗的整体时空特征;最后非线性映射输出多风电场未来时段的功率预测结果。实际算例结果表明,所提模型通过学习不同天气条件下风功率的时空动态演变规律,可将多风电场日前功率预测精度提高2.10%~13.94%。 展开更多
关键词 深度学习 风电功率 相关性 时空同步图卷积网络 功率预测
在线阅读 下载PDF
时–空特征驱动的多轮次重构图卷积网络故障诊断方法 被引量:3
6
作者 王庆昕 张先杰 +3 位作者 张海峰 钟凯 陈宏田 韩敏 《控制理论与应用》 北大核心 2025年第1期149-157,共9页
近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出... 近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出了一种时–空特征驱动的多轮次重构图卷积网络(STMR-GCN)故障诊断方法.该方法首先利用多尺度卷积神经网络与GCN对故障信号进行特征提取.然后根据样本之间的余弦相似性对图结构进行多次重构,重构后的图模型能够更精确地反映样本之间的连边关系,并将得到的图模型输入到GCN进行故障种类的识别.最后,在东南大学(SEU)仿真数据集和真实的磨煤机数据集上进行实验,实验结果表明所提方法与其他对比方法相比诊断精度均有提高,从而证明STMR-GCN模型在故障诊断方面的有效性和实用性. 展开更多
关键词 故障诊断 时空特征 多轮次图重构 图卷积网络
在线阅读 下载PDF
融合同步知识和时空信息的电力系统暂态稳定评估框架 被引量:1
7
作者 刘雨晴 刘曌 +4 位作者 王小君 刘畅宇 裴玮 郄朝辉 窦嘉铭 《电网技术》 北大核心 2025年第6期2334-2346,共13页
新型电力系统复杂耦合特性和时变因素骤增,对暂态稳定评估(transientstabilityassessment,TSA)的准确性和快速性提出更高要求。深度学习算法的引入为TSA问题提供新的解决思路,但模型的结果可靠性问题制约其实际应用。因此提出一种融合... 新型电力系统复杂耦合特性和时变因素骤增,对暂态稳定评估(transientstabilityassessment,TSA)的准确性和快速性提出更高要求。深度学习算法的引入为TSA问题提供新的解决思路,但模型的结果可靠性问题制约其实际应用。因此提出一种融合同步知识和时空信息的评估框架,从电气特征选择、融入领域知识和模型内嵌可解释性方面提升评估性能与结果可信度。首先分析电气特征量与暂态稳定间的理论映射关系,引导模型特征选择;其次分析基于Kuramoto耦合振子模型的同步现象,将同步关键参数(节点耦合强度)引入图卷积神经网络(graph convolution network,GCN)的空间拓扑表示;在此基础上,结合内嵌可解释的Informer模型,提出Infor-GCN模型提取暂态过程特征时空耦合信息并进行特征增强;然后针对不同特征的稳定判别结果设计综合输出策略,提高模型结果可靠性。最后在IEEE-68节点系统的仿真算例表明所提方法在评估准确度和分析效率上具有优越性,并且在新样本下具备较强的泛化能力。 展开更多
关键词 暂态稳定评估 深度学习 图卷积神经网络 同步知识 时空特征
在线阅读 下载PDF
计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测 被引量:3
8
作者 黄南天 孙赫宏 +3 位作者 王圣元 蔡国伟 张良 王日俊 《中国电机工程学报》 北大核心 2025年第4期1424-1435,I0016,共13页
现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网... 现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网络的多公共充电站充电负荷时-空短期预测方法。首先,通过快速最大信息系数构建含有日期、气象以及历史负荷特征的多节点特征集。并通过数据自适应图生成,构建动态相似权时-空图,实现多公共充电站空间连接关系重构。然后,构建图卷积层,差异化生成各节点的空间聚合特征,实现全域充电节点差异化特征增强。同时,通过节点自适应参数学习方法学习不同充电节点的充电模式。最后,通过门控循环单元层挖掘空间聚合特征的时域特征。所提出的公共充电站充电负荷时-空预测方法相应的对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)和平均绝对误差(mean absolute error,MAE)分别为12.95%和31.72 kW。 展开更多
关键词 充电负荷时-空短期预测 多公共充电站 图神经网络 自适应图生成 差异化时空耦合关联 节点自适应参数学习
在线阅读 下载PDF
基于骨架识别的城轨车站监控视频乘客行为特征辨识研究 被引量:2
9
作者 管洋 贾利民 +1 位作者 陶思涵 豆飞 《都市快轨交通》 北大核心 2025年第1期106-111,共6页
城市轨道交通领域传统监控分析方法对视频监控图像(如摔倒、晕倒和打斗等异常行为识别)漏识率高、参数调整复杂,且难以高效地应用于现实城轨车站监控场景,针对此问题,采用基于骨架模式识别的人体姿态特征辨识框架,引入基于人体骨架的姿... 城市轨道交通领域传统监控分析方法对视频监控图像(如摔倒、晕倒和打斗等异常行为识别)漏识率高、参数调整复杂,且难以高效地应用于现实城轨车站监控场景,针对此问题,采用基于骨架模式识别的人体姿态特征辨识框架,引入基于人体骨架的姿态估计技术,采用Alpha Pose模型对乘客姿态进行精确估计,并结合时空图卷积网络(spatial temporal graph convolutional networks,ST-GCN)模型的方法,实现对城轨车站监控场景中异常行为的辨识。在COCO数据集和MPII数据集上分别达到了72.3 mAP和82.1 mAP的效果,相比较于Open Pose模型提升高达17%,验证了模型的有效性和实用性。结果表明,本文所提出的方法不仅提高了乘客行为的识别速度,同时具备对复杂场景的适应能力,为城轨安全监控提供一种新的技术方案。 展开更多
关键词 轨道交通 骨架识别 模式识别 城轨车站安全 乘客行为特征辨识 ST-GCN
在线阅读 下载PDF
基于自适应时空图卷积网络的航空发动机剩余寿命预测
10
作者 许丹阳 尚洁 +2 位作者 蒋琛 邱浩波 高亮 《计算机集成制造系统》 北大核心 2025年第6期2165-2177,共13页
为了深入挖掘传感器监测信号的时间域和空间域特征,全面反映健康状态进而提高故障预测精度,提出一种基于自适应时空图卷积网络(ASTGCN)的航空发动机剩余使用寿命(RUL)预测方法。首先以基于互信息的静态邻接矩阵为基础,结合参数可学习的... 为了深入挖掘传感器监测信号的时间域和空间域特征,全面反映健康状态进而提高故障预测精度,提出一种基于自适应时空图卷积网络(ASTGCN)的航空发动机剩余使用寿命(RUL)预测方法。首先以基于互信息的静态邻接矩阵为基础,结合参数可学习的动态邻接矩阵表示方法建立自适应邻接矩阵,自动调整传感器节点的空间关联,高质量构建航空发动机健康监测场景下的图结构数据;其次建立时空图卷积网络模块,分别利用一维和图卷积网络同步学习监测信号的时间和空间依赖关系,捕捉监测数据的动态时空相关性;最后将全连接层用于退化特征融合和RUL预测。采用公开的航空发动机退化数据集验证了ASTGCN的有效性和先进性。 展开更多
关键词 航空发动机 剩余使用寿命预测 数据驱动 时空图卷积网络 自适应邻接矩阵
在线阅读 下载PDF
基于时间卷积和自适应图卷积网络的电力系统暂态稳定评估
11
作者 肖龙 张靖 +2 位作者 何宇 刘影 叶永春 《电网技术》 北大核心 2025年第11期4580-4590,I0045,I0046,共13页
准确、快速的电力系统暂态稳定评估对电网的安全稳定运行至关重要。为提高电力系统暂态稳定评估的准确率,提出一种基于时间卷积网络(temporalconvolutionalnetwork,TCN)和自适应图卷积网络(adaptive graph convolutional network,AGCN)... 准确、快速的电力系统暂态稳定评估对电网的安全稳定运行至关重要。为提高电力系统暂态稳定评估的准确率,提出一种基于时间卷积网络(temporalconvolutionalnetwork,TCN)和自适应图卷积网络(adaptive graph convolutional network,AGCN)的暂态稳定评估方法。该方法将暂态稳定评估建模为样本空间映射问题,以故障前、故障中和故障后的母线电压幅值和相角作为输入,采用时间卷积网络提取暂态数据的时序特征,并通过自适应图卷积网络来处理电网节点间的拓扑关系,以挖掘其空间结构特征,进而实现系统暂态稳定的快速准确判断。此外,在模型训练过程中,采用焦点损失函数(focalloss,FL)作为目标函数,以改善暂态样本固有的类别不平衡所造成的模型倾向性问题和处于稳定边界区域的难分类样本易错判问题。最后,在IEEE39和IEEE145节点系统算例中进行仿真分析,验证了所提方法的有效性。 展开更多
关键词 暂态稳定评估 时间卷积网络 自适应图卷积网络 焦点损失函数 样本不平衡
在线阅读 下载PDF
面向6G无线组网的基于GCN-LSTM网络的业务流量预测算法
12
作者 孙诗蕾 徐澍 +1 位作者 李春国 杨绿溪 《数据采集与处理》 北大核心 2025年第5期1239-1249,共11页
随着移动通信技术的飞速发展,无线网络面临着资源分配、流量分析和6G基站优化等多重挑战。对无线网络流量的有效预测,有助于合理地分配网络资源,为用户提供更稳定更高效的服务,保证网络性能。针对目前无线组网流量预测过程中由于时空特... 随着移动通信技术的飞速发展,无线网络面临着资源分配、流量分析和6G基站优化等多重挑战。对无线网络流量的有效预测,有助于合理地分配网络资源,为用户提供更稳定更高效的服务,保证网络性能。针对目前无线组网流量预测过程中由于时空特征挖掘不充分导致预测准确率较低的问题,开展了基于深度学习方法的智能业务流量预测算法的研究,设计了基于图卷积神经网络-长短期记忆网络(Graph convolutional network-Long short-term memory,GCN-LSTM)模型的预测算法。实验结果显示,该算法在实际网络应用中的准确率为84.71%,相较于其他基于深度学习的流量预测方法,具有显著优势,为6G网络资源的合理分配和高效服务提供了有力支持。 展开更多
关键词 无线网络流量预测 深度学习 图卷积神经网络 长短期记忆 时空特征挖掘
在线阅读 下载PDF
骨骼点特征提取下运动姿态异常识别
13
作者 赵国栋 李勇啸 沈梦英 《现代电子技术》 北大核心 2025年第21期88-92,共5页
为解决传统方法在姿态异常识别中存在的特征表达能力不足、对视角变化敏感等问题,文中提出一种骨骼点特征提取下运动姿态异常识别方法。利用人体姿态估计算法处理运动监控视频,提取多分支骨骼点特征后,将其作为基于自适应图卷积的运动... 为解决传统方法在姿态异常识别中存在的特征表达能力不足、对视角变化敏感等问题,文中提出一种骨骼点特征提取下运动姿态异常识别方法。利用人体姿态估计算法处理运动监控视频,提取多分支骨骼点特征后,将其作为基于自适应图卷积的运动姿态异常识别模型的输入;基于密集邻接的空间图卷积模块捕捉同一帧视频中关节点之间的空间结构关系;通过多尺度时间图卷积模块学习连续帧视频运动姿态的动态演变,将这两个模块的输出送入到注意力融合模块中;利用空间、时间、通道注意力机制强化特征表达,由全连接层输出运动姿态异常识别结果。实验结果表明:该方法可实现运动姿态异常识别,F_(1) score、APE、PSI、MVC指标值分别为91.53%、1.13、0.72、0.915,模型具有一定的泛化性和鲁棒性。 展开更多
关键词 骨骼点特征 人体姿态估计 空间图卷积 时间图卷积 关节点 注意力融合模块
在线阅读 下载PDF
基于图注意力机制的三维人体姿态估计时空上下文网络
14
作者 曾正东 赵明 《计算机应用》 北大核心 2025年第10期3161-3169,共9页
近期关于人体姿态估计的研究表明,充分发挥二维姿态潜在空间信息的能力,获取具有代表性的特征,可产生更准确的三维姿态估计结果。因此,提出一种基于图注意力机制的时空上下文网络,该网络包括带滑动窗口的时间上下文网络(TCN)、由肢体引... 近期关于人体姿态估计的研究表明,充分发挥二维姿态潜在空间信息的能力,获取具有代表性的特征,可产生更准确的三维姿态估计结果。因此,提出一种基于图注意力机制的时空上下文网络,该网络包括带滑动窗口的时间上下文网络(TCN)、由肢体引导的全局图注意力机制网络(EGAT)和基于姿态语法的局部图注意力卷积网络(PGCN)。首先,使用STCN将长序列的二维关节位置转化为单序列的人体姿态潜在特征,从而有效聚合和利用远、近距离的人体姿态信息,并大幅降低计算成本。其次,提出EGAT模块,以有效计算全局空间上下文。该模块将人体边缘节点视为“交通枢纽”,为它们与其他节点之间的信息交换建立桥梁。再次,利用图注意力机制进行自适应权值分配,对人体关节进行全局上下文计算。最后,设计PGCN模块,利用图卷积网络(GCN)计算和建模局部空间上下文,它强调人体对称节点的运动一致性和人体骨骼的运动关联结构。在Human3.6M和HumanEva-Ⅰ这2个复杂的标准数据集上评估所提模型。实验结果表明,所提模型具有更优越的性能,在输入帧长度为81的情况下,所提模型在数据集Human3.6M上的每个关节的平均位置误差(MPJPE)达43.5 mm,与目前先进算法MCFNet(Multi-scale Cross Fusion Network)相比降低了10.5%,体现出更高的准确度。 展开更多
关键词 三维人体姿态估计 图注意力 时间上下文 空间上下文 时间卷积网络
在线阅读 下载PDF
基于多头注意力时空图卷积网络的交通事故预测
15
作者 姜天豪 王瑞 《上海大学学报(自然科学版)》 北大核心 2025年第4期678-690,共13页
提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络... 提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络的连接权重进行动态调整,提升了对空间依赖性的刻画能力.结果表明,该模型在伦敦道路网络数据集上的表现优于已有模型,在多个指标上显著提升了预测精度. 展开更多
关键词 交通事故预测 时空图卷积网络 多头注意力机制 自适应邻接矩阵
在线阅读 下载PDF
结合互注意力空间自适应和特征对集成判别的细粒度图像分类
16
作者 李志欣 匡文兰 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期69-82,共14页
细粒度图像具有类间差异小和类内区别大的特点,许多研究利用Vision Transformer挖掘关键区域特征来提升细粒度图像分类的精度,但其仍存在2个主要问题:首先,网络挖掘关键性分类线索时背景区域也考虑在内,给模型带来额外噪声干扰;其次,输... 细粒度图像具有类间差异小和类内区别大的特点,许多研究利用Vision Transformer挖掘关键区域特征来提升细粒度图像分类的精度,但其仍存在2个主要问题:首先,网络挖掘关键性分类线索时背景区域也考虑在内,给模型带来额外噪声干扰;其次,输入的图像局部嵌入特征之间欠缺空间联系,模型缺乏物体结构认知能力,导致提取的类别特征不准确。针对此问题,本文提出互注意力空间自适应和特征对集成判别2个模块。先通过互注意力空间自适应模块学习不同嵌入层的互注意力增强权重,用于选择更佳的判别性区域,通过图卷积网络自适应学习不同区域的邻接关系;再利用特征对集成判别模块考虑图像对之间的线索交互,减少细粒度图像间的混淆,在令牌特征增强策略下得出最终预测结果。本文方法在CUB-200-2011、Stanford Dogs和NABirds等3个基准数据集上测试准确率分别达到92.5%、93.3%和91.8%,优于现有许多先进方法。 展开更多
关键词 细粒度图像分类 互注意力空间自适应 特征对集成判别 图卷积网络 令牌特征增强
在线阅读 下载PDF
计及时-空全域特征增强的广域多风电场风电功率短期预测
17
作者 黄南天 李炳玲 +3 位作者 孙赫宏 王瑶瑶 蔡国伟 张良 《电网技术》 北大核心 2025年第9期3688-3698,I0051,共12页
现有研究多依据地理位置或风电出力判定多风电场空间相关性,却忽视了高预测绝对误差值下风电并网出力的功率波动对电力系统稳定性的潜在威胁。文章提出一种基于时-空全域特征增强的广域多风电场风电功率短期预测模型。首先,在各区域实... 现有研究多依据地理位置或风电出力判定多风电场空间相关性,却忽视了高预测绝对误差值下风电并网出力的功率波动对电力系统稳定性的潜在威胁。文章提出一种基于时-空全域特征增强的广域多风电场风电功率短期预测模型。首先,在各区域实施“两个细则”背景下,采用多风电场出力的平均绝对误差为衡量多风电场风电并网波动对电力系统负面影响主要指标。通过最大相关系数定风电出力预测平均绝对误差强相关气象特征。其次,跨出地理位置相邻约束条件,以多风电场之间出力平均绝对误差为空间相关性构建时-空图边特征。通过时-空图神经网络信息传播机制,提高多场站数值天气预报的利用率,实现时-空全域全特征增强。然后,计及小概率场景影响引入绝对误差损失和交叉熵损失相结合的损失函数,优化不同小样本的类别权重向量。最后,将增强后的特征形成时间序列输入到门控循环单元层以实现广域多风电场短期风电功率预测。实验结果表明,所提方法的均方根误差和平均绝对值误差绝对值百分比分别下降了0.89%~7.85%和3.56%~6.19%。与其他方法的平均绝对误差相比,在小概率场景下最劣的评估指标提高了92.14MW,具有更好的鲁棒性。 展开更多
关键词 广域多风电场 短期风电功率预测 数值天气预报 全域全特征增强 时-空图卷积神经网络
在线阅读 下载PDF
时空上下文感知的下一个PoI推荐方法
18
作者 海燕 王静 刘志中 《计算机应用研究》 北大核心 2025年第11期3275-3283,共9页
随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法... 随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法。首先,利用图注意力网络(GAT)学习包含社交关系的用户表征;并且通过流行度增强二部图神经网络(PEBGNN)学习含有PoI交互偏好的用户表征和PoI表征;同时,利用时空图卷积网络(ST-GCN)学习PoI时空转移偏好的PoI表征;最后,通过融合所学到的用户表征和PoI表征,计算出用户对于各个PoI的预测评分,以此为基础为用户推荐下一个PoI。为了验证该方法的有效性,在Gowalla、Foursquare以及Yelp这三个公开的数据集上进行了测试。实验结果显示,相比于多个基准模型,所提方法在准确率和召回率方面均展现出了显著的优势,分别平均提升28.53%和7.65%。 展开更多
关键词 下一个PoI推荐 PoI流行度 时空上下文 时空转移图 图注意力网络 时空图卷积网络
在线阅读 下载PDF
用于交通流量预测的多图扩散注意力网络
19
作者 王泉 陆啟想 施珮 《计算机应用》 北大核心 2025年第5期1472-1479,共8页
当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MG... 当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MGDAM)和时间注意力模块。首先,使用自适应时空嵌入生成器构建动态的时空信息;其次,采用最大互信息系数(MIC)矩阵与自适应矩阵挖掘细粒度的空间信息,并利用全局空间注意力机制挖掘动态的空间相关性;最后,使用时间注意力模块提取非线性的时间相关性,并通过3个模块的结合实现时空相关性的有效提取。在PEMS08数据集上的实验结果表明,MGDAN在1 h内的平均绝对误差(MAE)相较于时空自编码器(ST_AE)和时空身份信息(STID)模型分别降低了19.34%和5.74%,且整体预测性能均优于9个基线模型,能够精准地进行中长期交通流量预测,为城市交通疏导提供理论依据。 展开更多
关键词 交通流量预测 时空模型 自适应时空嵌入 图卷积网络 注意力网络
在线阅读 下载PDF
改进时空图卷积模型的双人交互行为识别算法
20
作者 姬晓飞 张薇 冯雅迪 《科学技术与工程》 北大核心 2025年第8期3316-3324,共9页
针对双人交互行为识别网络中存在忽略人体间的非自然连接关系和交互关系等突出问题,提出一种改进时空图卷积模型的双人交互行为识别算法。首先通过边卷积操作汇聚节点的边特征,以捕获人体的非自然连接关系;其次利用改进的关系网络,构建... 针对双人交互行为识别网络中存在忽略人体间的非自然连接关系和交互关系等突出问题,提出一种改进时空图卷积模型的双人交互行为识别算法。首先通过边卷积操作汇聚节点的边特征,以捕获人体的非自然连接关系;其次利用改进的关系网络,构建了双人之间的交互关系图;然后将边卷积操作分支及交互关系图嵌入时空图卷积网络块,分别构建为边-图卷积块和交互关系块;最后将两者高效融合,提出一个能同时捕捉非自然连接关系和交互关系的改进时空图卷积算法,从而实现双人交互行为识别。为验证网络的有效性,在国际公开大型标准数据集NTU RGB+D上进行测试。实验结果显示,该算法识别准确率达97.77%,相比于基线时空图卷积模型提升了4.28个百分点,提高了双人交互行为特征的表现力,取得了比现有先进网络模型更好的识别效果。 展开更多
关键词 双人交互行为识别 关节点数据 边卷积 关系网络 时空图卷积网络
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部