期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
改进YOLOv5s的路面坑槽目标检测模型 被引量:1
1
作者 赵江平 王欣然 吴立舟 《中国安全科学学报》 北大核心 2025年第1期67-74,共8页
为提高道路安全巡检工作中路面坑槽隐患的检测效率和自动化水平,降低交通事故发生概率,构建一种基于改进YOLOv5s的路面坑槽隐患智能检测模型。在原YOLOv5s网络中加入自适应空间特征融合(ASFF)模块,将主干网络替换为FasterNet网络,引入... 为提高道路安全巡检工作中路面坑槽隐患的检测效率和自动化水平,降低交通事故发生概率,构建一种基于改进YOLOv5s的路面坑槽隐患智能检测模型。在原YOLOv5s网络中加入自适应空间特征融合(ASFF)模块,将主干网络替换为FasterNet网络,引入轻量通道注意力(ECA)模块;通过消融试验分析改进模块对检测模型性能的影响,验证目标检测效果,并开发交互式可视化检测界面。结果表明:改进后的模型精度、召回率和平均检测精度分别提升了4.1%、9.9%和5.6%。较原网络有较为显著的提升,具有良好的检测效果,能够满足路面坑槽自动化检测的应用需求,提高巡检效率,减少因路面坑槽导致的交通事故。 展开更多
关键词 YOLOv5s 路面坑槽 目标检测 自适应空间特征融合(asff) FasterNet
在线阅读 下载PDF
基于特征融合和增强的蚕茧图像分类模型
2
作者 刘莫尘 侯欣 +6 位作者 韦伟 张鑫山 李法德 宋占华 张桂征 梁光健 闫银发 《蚕业科学》 北大核心 2025年第1期59-67,共9页
为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维... 为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维度语义信息;然后引入自适应空间特征融合模块,融合蚕茧浅层图像信息和深层语义信息,解决ResNet41在特征提取过程中出现的信息丢失问题;最后采用挤压和激发模块抑制冗余信息,降低分类偏差。改进模型B-Res41-ASE在测试集中的分类准确率和F 1值分别为93.7%和94.9%,对上车茧的分类精确率为97.8%,对黄斑茧、柴印茧、烂茧、瘪茧、薄皮茧等下茧的分类精确率分别为96.4%、93.7%、98.6%、94.5%、93.1%,相比于改进前模型和常用的细粒度分类模型均有明显优势,且B-Res41-ASE对蚕茧的可判别区域的聚焦更精准。实验结果表明,文中提出的优化方法在分类准确率、鲁棒性等方面优于其他蚕茧分类模型,可为蚕茧智能分拣提供理论依据。 展开更多
关键词 蚕茧分类 双线性池化 自适应空间特征融合 可视化分析
在线阅读 下载PDF
自然环境下改进YOLOv5对小目标苹果的检测
3
作者 刘子龙 张磊 《系统仿真学报》 北大核心 2025年第8期2124-2138,共15页
针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为... 针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为了SIoU,提高了目标检测框的位置预测精度。将部分普通卷积替换为了深度可分离卷积,减少了计算量。实验结果表明:改进YOLOv5的综合性能要优于原始YOLOv5及其他算法,mAP值相比原始YOLOv5提升了9.6%。 展开更多
关键词 智能农业 坐标注意力机制 感受野 自适应空间特征融合 小目标检测 YOLOv5
在线阅读 下载PDF
基于航拍图像的自适应感知目标检测网络
4
作者 袁玲玲 陈春梅 +2 位作者 朱天鑫 邓豪 刘桂华 《电子测量技术》 北大核心 2025年第2期57-65,共9页
由于无人机拍摄高度和角度的多样性,其图像往往呈现背景复杂且小目标居多的特征,这导致了相关检测算法性能较差。针对此问题,本文提出了一种基于自适应感知网络的航拍图像车辆检测方法,旨在从提高车辆特征显著度和改善特征信息损失两个... 由于无人机拍摄高度和角度的多样性,其图像往往呈现背景复杂且小目标居多的特征,这导致了相关检测算法性能较差。针对此问题,本文提出了一种基于自适应感知网络的航拍图像车辆检测方法,旨在从提高车辆特征显著度和改善特征信息损失两个方面来提升小目标的检测性能。首先,为了提取更高效的特征表征,提出了自适应感知特征提取模块,该模块通过捕捉长程依赖关系和更强的几何特征表示,能够自适应地对物体的形状进行建模。其次,为了减少下采样和连续池化造成的信息损失,设计了双分支空间感知下采样模块,该模块混合不同通道的特征图,以最大限度地保留小目标特征信息。然后,在特征融合网络中,引入了具有丰富空间信息的浅层特征图,以增强小目标的检测能力。最后,设计了新的动态回归损失函数DEIoU,该函数引入惩罚项来度量真实框与检测框之间横纵比的相关性,从而进一步提高网络的预测精度。在Visdrone数据集上的实验结果表明,所提方法的平均精度均值mAP达到了70%,推理速度达到了99.26 fps,实现了较好的速度与精度的平衡,并且所提方法在UCAS-AOD数据集上取得了最佳的检测精度,具有较强的泛化能力。 展开更多
关键词 无人机 目标检测 自适应感知特征提取 特征融合网络 双分支空间感知下采样
在线阅读 下载PDF
基于窗口自注意力网络与YOLOv5融合的输电线路通道异物检测 被引量:2
5
作者 薛昂 姜恩宇 +2 位作者 张文涛 林顺富 米阳 《上海交通大学学报》 北大核心 2025年第3期413-423,共11页
针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的... 针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的能力.其次,改进自适应空间特征融合(ASFF)模块,增强多尺度特征融合能力.最后,考虑到真实框与预测框不匹配的问题,引入结构相似性交并比(SIoU),优化边界误差,提高小目标定位准确性.实验结果表明,本文模型对线路通道多目标入侵检测精度达到90.2%,且提升了小目标检测效果;与主流目标检测算法相比,可以更好地满足输电线路通道中的异物检测需求. 展开更多
关键词 智能化巡检 输电线路通道 目标检测 窗口自注意力网络 自适应空间特征融合
在线阅读 下载PDF
面向航拍交通目标的实时检测算法
6
作者 黄林辉 钟小勇 +1 位作者 杨浩 邱昊 《计算机工程与设计》 北大核心 2025年第2期587-594,共8页
针对目前无人机视角下进行交通目标检测过程中的各项问题,提出一种面向航拍交通目标的实时检测算法。引入高效通道注意力机制,加强网络对重要特征信息的提取能力,设计一种多元特征融合模块,帮助特征融合网络更好掌握全局信息;在此基础上... 针对目前无人机视角下进行交通目标检测过程中的各项问题,提出一种面向航拍交通目标的实时检测算法。引入高效通道注意力机制,加强网络对重要特征信息的提取能力,设计一种多元特征融合模块,帮助特征融合网络更好掌握全局信息;在此基础上,引入自适应空间特征融合模块,对浅层特征和深层的语义信息进行融合;采用更优的回归损失函数对网络进行训练,获取预测框和真实框之间更精准的位置信息。实验结果表明,该算法比主流算法具有更高的检测精度和检测速度。 展开更多
关键词 无人机 交通目标检测 注意力机制 多元特征融合 自适应空间特征融合 小目标检测 损失函数
在线阅读 下载PDF
基于改进YOLOv8n的井下人员多目标检测
7
作者 问永忠 贾澎涛 +2 位作者 夏敏高 张龙刚 王伟峰 《工矿自动化》 北大核心 2025年第1期31-37,77,共8页
针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSE... 针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSEAM),以增强对遮挡目标的检测性能;在C2f模块中引入混合局部通道注意力(MLCA)机制,构建C2f-MLCA模块,以融合局部和全局特征信息,提高特征表达能力;在Head层检测头中嵌入自适应空间特征融合(ASFF)模块,以增强对小尺度目标的检测性能。实验结果表明:(1)与Faster R-CNN,SSD,RT-DETR,YOLOv5s,YOLOv7等主流模型相比,YOLOv8n-MSMLAS综合性能表现最佳,mAP@0.5和mAP@0.5:0.95分别达到93.4%和60.1%,FPS为80.0帧/s,参数量为5.80×106个,较好平衡了模型的检测精度和复杂度。(2)YOLOv8n-MSMLAS在光照不均、目标尺度不一致、遮挡等条件下表现出较好的检测性能,适用于现场检测。 展开更多
关键词 煤矿井下危险区域 井下人员多目标检测 YOLOv8n 多尺度空间增强注意力机制 自适应空间特征融合 轻量化混合局部通道注意力机制
在线阅读 下载PDF
基于YOLOv8增强的目标检测算法及其应用规范
8
作者 徐永伟 任好盼 王棚飞 《计算机科学》 北大核心 2025年第7期189-200,共12页
目标检测是计算机视觉领域的关键技术之一,旨在从图像或视频中定位目标位置并识别所属的类别,被广泛应用于智能交通、安防监控、工业检测等领域。YOLOv8目标检测方法在检测精度和实时性方面取得了优异的结果,但是在复杂背景干扰、小目... 目标检测是计算机视觉领域的关键技术之一,旨在从图像或视频中定位目标位置并识别所属的类别,被广泛应用于智能交通、安防监控、工业检测等领域。YOLOv8目标检测方法在检测精度和实时性方面取得了优异的结果,但是在复杂背景干扰、小目标检测、遮挡等方面面临严峻挑战,容易出现误检或漏检的情况。为了提高目标检测的精度,提出了一种基于YOLOv8增强的目标检测算法,并探讨了相应的应用规范。在技术层面,首先,在主干网络中引入空间注意力机制,增强了模型对关键目标的特征提取能力;同时,设计了自适应特征融合模块,提高了模型对多尺度特征图的整合能力。其次,采用了数据增强技术和迁移学习策略,有效地缓解了数据集中样本不平衡和目标数量限制的问题。然后,通过边框回归损失和分类损失的动态权重调整机制,进一步提高了模型的预测精度。最后,通过COCO,PASCAL VOC,Cityscapes, KITTI,VisDrone这5个数据集的大量实验证明了所提方法在检测精度和运行速度方面比最新方法更加准确高效,特别是在复杂场景、小目标检测和遮挡的情况下,模型的鲁棒性和准确性显著提升。在应用规范层面,为应对大规模目标检测算法应用产生的个人图像隐私数据安全的风险,在法律、伦理、技术等方面提出完善的应用规范,以推动技术进步紧密贴合社会发展需求。 展开更多
关键词 YOLOv8 目标检测 空间注意力 自适应特征融合 复杂场景 应用规范
在线阅读 下载PDF
基于改进YOLOv8的小目标检测算法
9
作者 邓立国 吴毅麒 《现代电子技术》 北大核心 2025年第14期169-177,共9页
小目标检测在自动驾驶、医学诊断、工业质检等领域的应用需求日益凸显。针对现有小目标检测算法存在的误检、漏检以及检测精度低等问题,提出一种基于改进YOLOv8的小目标检测算法,即PGA-YOLOv8。该算法以YOLOv8为基础模型,结合注意力机... 小目标检测在自动驾驶、医学诊断、工业质检等领域的应用需求日益凸显。针对现有小目标检测算法存在的误检、漏检以及检测精度低等问题,提出一种基于改进YOLOv8的小目标检测算法,即PGA-YOLOv8。该算法以YOLOv8为基础模型,结合注意力机制来提高对小目标的定位能力;在特征融合网络中改进特征融合策略(ASFF),增加1个检测层来学习浅层的特征,以更好地利用各层次特征信息;将YOLOv8模型中部分普通卷积替换为分组重组卷积(GSConv)以优化网络结构。最后,在常用基准数据集(VOC2012)和航空图像数据集(AI-TOD)上,以YOLOv8为基准模型设置多组实验,验证改进的各种技术的有效性以及PGA-YOLOv8算法的检测能力。实验结果表明,相较于YOLOv8算法,所提算法在两个数据集中平均精度均值(mAP)分别提高了2.576%和6.389%。 展开更多
关键词 小目标检测 YOLOv8 极化自注意力模块 自适应空间特征融合策略 分组重组卷积 性能评估
在线阅读 下载PDF
基于图卷积的自适应特征融合MRI脑肿瘤分割方法
10
作者 张野 张睦卿 +1 位作者 袁学刚 牛大田 《河北科技大学学报》 北大核心 2025年第4期395-404,共10页
针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷... 针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷积推理模块,捕获额外的远程上下文特征;在编解码器中引入动态蛇形卷积(dynamic snake convolution, DSConv)能更精准地契合肿瘤形态各异的特点,提高边缘特征提取能力,从而有效提升分割精度;在解码器中引入自适应空间特征融合(adaptive spatial feature fusion, ASFF)模块,通过整合多个编码器块捕获的语义信息提升特征融合效果。在公开的BraTS 2019—2021数据集上的评估表明,整个肿瘤、肿瘤核心和增强肿瘤的Dice值分别为90.70%/90.70%/91.00%、84.90%/84.00%/88.80%和77.30%/77.40%/82.50%,证明了ASGU-Net在脑肿瘤分割任务中的有效性。ASGU-Net可有效解决全局信息捕获不足和特征融合不充分的问题,为脑肿瘤高精度自动化分割提供了参考。 展开更多
关键词 计算机神经网络 脑肿瘤分割 三维U-Net 图卷积推理瓶颈层 动态蛇形卷积 自适应空间特征融合
在线阅读 下载PDF
复杂作业场景下的反光衣和安全帽检测方法 被引量:3
11
作者 谢国波 肖峰 +2 位作者 林志毅 谢建辉 吴陈锋 《安全与环境学报》 CAS CSCD 北大核心 2024年第9期3513-3521,共9页
针对现有算法在复杂的工地环境中进行反光衣和安全帽检测时存在的无法有效区分目标和背景的微小差异问题,提出了一种改进YOLOX的反光衣和安全帽检测算法。首先,将主干网络中空间金字塔池化中的最大池化替换为平均池化,减少特征图的信息... 针对现有算法在复杂的工地环境中进行反光衣和安全帽检测时存在的无法有效区分目标和背景的微小差异问题,提出了一种改进YOLOX的反光衣和安全帽检测算法。首先,将主干网络中空间金字塔池化中的最大池化替换为平均池化,减少特征图的信息损失和过拟合风险;其次,设计一种带权注意力模块(Weighted Convolutional Block Attention Module,W-CBAM)嵌入特征融合层,通过权重系数提升对特征图空间维度的关注,增强特征图的表达能力;最后,添加自适应特征融合(Adaptively Spatial Feature Fusion,ASFF)模块,解决多尺度特征融合时存在的不一致性问题。在扩充后的公开反光衣安全帽数据集的试验结果表明,所提算法精度高达98.79%,优于原始的YOLOX算法和其他先进算法,同时具有较快的检测速度,满足施工环境检测需求。 展开更多
关键词 安全工程 反光衣检测 安全帽检测 YOLOX 注意力模块 自适应特征融合
在线阅读 下载PDF
基于改进YOLOv5的无人机影像道路裂缝检测方法 被引量:4
12
作者 朱伟刚 汪伦 +1 位作者 陈田 邹博文 《测绘通报》 CSCD 北大核心 2024年第3期173-178,共6页
道路裂缝的出现对道路使用寿命和人车安全带来明显影响,需及时检测出道路裂缝。针对无人机影像中裂缝目标小、图像背景复杂导致检测精度低等问题,本文以无人机采集裂缝图像作为研究数据,提出了一种改进YOLOv5模型的深度学习道路裂缝检... 道路裂缝的出现对道路使用寿命和人车安全带来明显影响,需及时检测出道路裂缝。针对无人机影像中裂缝目标小、图像背景复杂导致检测精度低等问题,本文以无人机采集裂缝图像作为研究数据,提出了一种改进YOLOv5模型的深度学习道路裂缝检测方法。在YOLOv5模型骨干网络中分别加入CBAM、SimAM、CA注意力机制,提高模型对裂缝的识别能力及检测精度,通过消融试验进行对比分析,同时在YOLOv5模型上融入自适应空间特征融合算法,改善裂缝特征提取能力。研究表明,改进后的YOLOv5网络模型相比于原模型,精度得到明显提高,均值平均精度(mAP)提升20.6%,在保证准确性的同时有效提高了检测精度,可为道路裂缝检测提供新的方法。 展开更多
关键词 裂缝检测 YOLOv5 注意力机制 自适应空间特征融合
在线阅读 下载PDF
基于深度学习的铁路异物侵限快速检测方法 被引量:8
13
作者 王辉 姜朱丰 +3 位作者 吴雨杰 范自柱 罗国亮 杨辉 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期2086-2098,共13页
针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法。首先,以ResNet-18网络作为铁路限界检测的主... 针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法。首先,以ResNet-18网络作为铁路限界检测的主干网络,利用辅助检测模块提升限界检测精度,达到特征提取速度快,语义信息丰富充足等目标。同时采用基于行锚框的分割算法检测轨道线坐标位置,结合标准轨距下的限界定义确定铁路异物入侵限界的范围,以减少侵限异物检测的区域。其次,设计基于Octave卷积的层内多尺度残差模块,将单通道卷积变为基于图像频率的双通道卷积,以降低卷积计算量,进一步提升异物侵限算法的检测速度。最后,引入空间金字塔模块和特征自适应融合模块,实现高、低级语义信息交换,从而增加网络对不同尺度目标的感知能力,并减少语义冲突问题。通过对比实验验证异物侵限检测算法的精度、速度和有效性。实验结果表明,所述方法能以172帧/s的速度对轨道位置和限界区域进行检测,精确度达98.12%。与其他算法相比,在大中小3种目标尺度上都超越了其他对比算法。所提出的融合轨道限界和侵限异物检测的方法,在保证精度的前提下,速度达到YOLOv3算法的2倍,能够满足列车对侵限异物的实时检测需求。 展开更多
关键词 异物侵限检测 Octave卷积 行锚框 铁路限界检测 空间金字塔 特征自适应融合
在线阅读 下载PDF
基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法 被引量:4
14
作者 胡丹丹 张忠婷 《智能系统学报》 CSCD 北大核心 2024年第3期653-660,共8页
在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以... 在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以提升检测速度。其次,在特征融合网络中引入基于感受野模块(receptive field block,RFB)改进的RFB-s,通过模仿人类视觉感知,增强特征图的有效感受野区域,提高网络特征表达能力及对目标特征的可辨识性。最后,使用自适应空间特征融合(adaptively spatial feature fusion,ASFF)方式以提升PANet对多尺度特征融合的效果。实验结果表明,在PASCAL VOC数据集上,所提算法检测平均精度均值相较于YOLOv5s提高1.71个百分点,达到84.01%,在满足自动驾驶汽车实时性要求的前提下,在一定程度上减少目标检测时的误检及漏检情况,有效提升模型在复杂驾驶场景下的检测性能。 展开更多
关键词 YOLOv5s 自动驾驶 目标检测算法 深度可分离卷积 感受野模块 自适应空间特征融合 PANet 多尺度特征融合
在线阅读 下载PDF
基于自适应特征融合和注意力机制的变电设备红外图像识别 被引量:1
15
作者 王媛彬 吴冰超 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3749-3756,共8页
针对变电设备红外图像复杂背景下多目标、小目标及遮挡目标识别效果差的问题,该文提出一种基于中心点网络(CenterNet)的变电设备红外图像识别方法。通过将自适应特征融合模块(ASFF)和特征金字塔(FPN)相结合,构建ASFF+FPN结构的特征融合... 针对变电设备红外图像复杂背景下多目标、小目标及遮挡目标识别效果差的问题,该文提出一种基于中心点网络(CenterNet)的变电设备红外图像识别方法。通过将自适应特征融合模块(ASFF)和特征金字塔(FPN)相结合,构建ASFF+FPN结构的特征融合网络,增强了模型对多目标和小目标的跨尺度特征融合能力,排除背景信息;针对网络对遮挡目标特征捕捉能力差的问题,在特征融合网络中添加全局注意力机制,增强目标显著度;为实现模型轻量化,引入深度可分离卷积,减少参数量和推理时间;最后,通过引入分布焦点损失函数,克服了原损失函数对遮挡目标敏感性差的问题,提升了模型收敛速度和识别精度。在包含7种红外变电设备图像的自建数据集上进行测试。实验表明该算法与原始算法相比,识别精度提升了3.55%,达到了95.19%,模型参数量仅为32.52M,与4种主流目标识别算法对比,该算法在识别精度和算法复杂度上具有明显优势。 展开更多
关键词 变电设备 红外图像识别 中心点网络 自适应特征融合 注意力机制
在线阅读 下载PDF
基于改进YOLOv7的钢轨缺陷检测方法 被引量:1
16
作者 赵亚凤 宋文华 +1 位作者 刘晓璐 胡峻峰 《电子测量技术》 北大核心 2024年第20期177-185,共9页
针对铁路轨道缺陷检测精度低,漏检率高,实时性不足的问题,本文提出了一种基于YOLO-FCA的钢轨缺陷检测算法。首先,将YOLOv7的主干网络替换成FasterNet轻量网络,并加入CloAttention注意力模块,减少参数量和计算负载的同时提高缺陷检测的... 针对铁路轨道缺陷检测精度低,漏检率高,实时性不足的问题,本文提出了一种基于YOLO-FCA的钢轨缺陷检测算法。首先,将YOLOv7的主干网络替换成FasterNet轻量网络,并加入CloAttention注意力模块,减少参数量和计算负载的同时提高缺陷检测的精度。其次,提出MS-ASFF,获取高层语义信息和保留低层详细特征,增强模型检测的准确性和鲁棒性。最后,在不影响精度的情况下进行网络剪枝,使模型更加轻量化,极大地提升了模型的检测速度。在公共数据集上进行实验,结果表明,YOLO-FCA相比原始模型YOLOv7模型的mAP提高了4.1%,达到80.7%,同时检测速度提升了38.5%,达到212.5 FPS。实验结果表明,YOLO-FCA能够高效且准确地定位检测钢轨缺陷。 展开更多
关键词 YOLOv7算法 钢轨缺陷 自适应的空间特征融合 注意力机制 轻量化模型
在线阅读 下载PDF
基于双流自适应时空增强图卷积网络的手语识别 被引量:1
17
作者 金彦亮 吴筱溦 《应用科学学报》 CAS CSCD 北大核心 2024年第2期189-199,共11页
针对提取手语特征过程中出现的信息表征能力差、信息不完整问题,设计了一种双流自适应时空增强图卷积网络(two-stream adaptive enhanced spatial temporal graph convolutional network,TAEST-GCN)实现基于孤立词的手语识别。该网络使... 针对提取手语特征过程中出现的信息表征能力差、信息不完整问题,设计了一种双流自适应时空增强图卷积网络(two-stream adaptive enhanced spatial temporal graph convolutional network,TAEST-GCN)实现基于孤立词的手语识别。该网络使用人体身体、手部和面部节点作为输入,构造基于人体关节和骨骼的双流结构。通过自适应时空图卷积模块生成不同部位之间的连接,并充分利用其中的位置和方向信息。同时采用残差连接方式设计自适应多尺度时空注意力模块,进一步增强该网络在空域和时域的卷积能力。将双流网络提取到的有效特征进行加权融合,可以分类输出手语词汇。最后在公开的中文手语孤立词数据集上进行实验,在100类词汇和500类词汇分类任务中准确率达到了95.57%和89.62%。 展开更多
关键词 骨架数据 双流结构 自适应时空图卷积模块 自适应多尺度时空注意力模块 特征融合
在线阅读 下载PDF
基于注意力机制及多分支特征融合的实时语义分割算法
18
作者 蒋锐 陈儒娜 +2 位作者 王小明 李大鹏 徐友云 《南京邮电大学学报(自然科学版)》 北大核心 2024年第2期91-100,共10页
为了合理平衡语义分割中的精确度与实时性,基于快速卷积神经网络模型(Fast-SCNN)提出了一种基于注意力机制及多分支特征融合的实时语义分割算法模型。该算法模型首先通过注意力模块捕获空间特征之间的相互联系,增强空间细节信息;然后合... 为了合理平衡语义分割中的精确度与实时性,基于快速卷积神经网络模型(Fast-SCNN)提出了一种基于注意力机制及多分支特征融合的实时语义分割算法模型。该算法模型首先通过注意力模块捕获空间特征之间的相互联系,增强空间细节信息;然后合理设计融合模块,最大化利用各分支信息,实现深层特征与浅层特征更好的融合;最后引入自适应特征增强注意力模块,捕获长距离像素间的相互依赖关系。实验结果表明,文中算法模型在Cityscapes数据集上获得了71.55%的分割精度,推理速度FPS达到97.6帧/s,模型参数量为1.39 M,验证了该算法所构成网络模型的有效性。 展开更多
关键词 实时语义分割 通道注意力 空间注意力 特征融合 自适应注意力
在线阅读 下载PDF
多尺度增强特征融合的钢表面缺陷目标检测 被引量:3
19
作者 林珊玲 彭雪玲 +3 位作者 王栋 林志贤 林坚普 郭太良 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1075-1086,共12页
针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法。该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使... 针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法。该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使得浅层特征在不丢失细节信息的同时获得丰富的深层语义。利用提出的空间特征增强模块从3个独立方向强化融合特征,通过引出残差旁路增强网络结构的稳定性,使卷积过程能够挖掘到更多的关键信息。根据先验框与真实框的整体交并程度为模型选择更为合适的训练样本。实验结果表明,该算法的检测精度达到80.47%,相比原始算法提升6.81%。该算法的参数量为2.36 M,计算量为952.67 MFLOPs,能快速且高精度检测钢材表面的缺陷信息,具有较高的应用价值。 展开更多
关键词 缺陷检测 单发多框检测器 增强特征融合 自适应加权融合 空间特征增强
在线阅读 下载PDF
基于空间相关性增强的无人机检测算法 被引量:3
20
作者 张会娟 李坤鹏 +3 位作者 姬淼鑫 刘振江 刘建娟 张弛 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第3期468-479,共12页
针对无人机(UAV)体积小、复杂背景下特征难以提取导致被误检和漏检的问题,提出基于自适应上采样和空间相关性增强的无人机小目标检测方法.采用多尺度的空洞卷积获取重要的上下文信息,然后通过注意力特征融合模块抑制多尺度特征融合造成... 针对无人机(UAV)体积小、复杂背景下特征难以提取导致被误检和漏检的问题,提出基于自适应上采样和空间相关性增强的无人机小目标检测方法.采用多尺度的空洞卷积获取重要的上下文信息,然后通过注意力特征融合模块抑制多尺度特征融合造成的信息冲突;采用亚像素卷积和双线性插值自适应融合的新上采样方式,融合更多无人机特征信息,同时平衡计算量;对深层特征图的空间局部特征和全局特征采用空间相关性增强策略,提高复杂背景下前景目标的敏感度,增强目标表达和抑制背景噪声.在自制无人机数据集上进行消融实验和对比实验,与原始YOLOv5算法相比,本算法的m AP0.5和m AP0.5∶0.95分别提高了2.4%和2.7%,检测速度能够达到58.5帧/s;在VisDrone2019数据集上进行验证,本算法较YOLOv5算法的mAP0.5和mAP0.5∶0.95分别提高了4.6%和1.3%. 展开更多
关键词 无人机(UAV) 小目标检测 特征融合 自适应上采样 空间相关性增强
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部