期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
1
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
深孔台阶爆破近区振动信号预处理与时频特征分析
2
作者 张文涛 汪海波 +4 位作者 高朋飞 王梦想 杨帆 吕闹 宗琦 《振动与冲击》 EI CSCD 北大核心 2024年第24期178-189,共12页
深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,... 深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)算法结合基于广义最小最大非凸(generalized minimax concave, GMC)惩罚项的稀疏降噪法与稀疏化基线估计消噪(baseline estimation and de-noising with sparsity, BEADS)算法的联合预处理方法。通过仿真信号验证该方法的可行性。将其应用于实际深孔台阶爆破近区振动信号的处理,并提取重构信号的时频特征,结果表明:在仿真信号试验中,该文构建的预处理方法能在有效保留信号真实成分的前提下消除高频噪声和低频趋势项的影响,相较于其他5种方法重构信号信噪比更高、均方根误差更小。在实测信号分析中,预处理后信号波形恢复正常,高频噪声成分被抑制,低频段频谱更清晰。时频特征分析发现,深孔台阶爆破近区振动信号主频较低,能量主要集中在25~150 Hz范围内,极低频和高频能量占比较少。根据时频特征分析结果结合爆破安全规程对爆破参数设计给出了建议。研究结果对爆破振动信号精确分析及制定爆破振动控制措施具有重要意义。 展开更多
关键词 爆破近区振动信号 预处理 时频分析 改进的自适应噪声完备集合经验模态分解(ICEEMDAN) 基于广义最小最大非凸(GMC)惩罚项的稀疏降噪法 稀疏化基线估计消噪(BEADS)
在线阅读 下载PDF
采用原子分解法的带并联补偿线路单相自适应重合闸 被引量:22
3
作者 贾晶晶 龚庆武 +2 位作者 李勋 关钦月 陈姝磊 《电力系统自动化》 EI CSCD 北大核心 2013年第5期117-123,共7页
带并联补偿输电线路单相瞬时性故障时,故障相恢复电压阶段会同时存在工频分量和低频分量,从而形成拍频现象。目前,基于上述原理的自适应重合闸判据抗干扰能力不强,且不能确定准确的熄弧时间。对此,文中采用一种新的信号处理方法——原... 带并联补偿输电线路单相瞬时性故障时,故障相恢复电压阶段会同时存在工频分量和低频分量,从而形成拍频现象。目前,基于上述原理的自适应重合闸判据抗干扰能力不强,且不能确定准确的熄弧时间。对此,文中采用一种新的信号处理方法——原子稀疏分解法分析非线性故障信号,以提取瞬时性故障时恢复电压阶段存在的低频分量,进而对故障性质作出判别;同时,原子稀疏分解法较强的时域和频域分析能力可以准确地确定故障熄弧时刻,为线路断路器的重合时刻整定提供依据。仿真实验验证了所述方法能够有效提高自适应重合闸性能。 展开更多
关键词 自适应重合闸 低频分量 信号局部特征量 原子稀疏分解
在线阅读 下载PDF
一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 被引量:22
4
作者 齐咏生 樊佶 +2 位作者 李永亭 高学金 刘利强 《振动与冲击》 EI CSCD 北大核心 2020年第21期140-150,共11页
针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方... 针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方法。使用ARSSD分析故障信号,并定义一个新的复合指标作为目标函数,利用布谷鸟寻优算法(CSA)对高、低品质因子进行优化选择,获得包含瞬态冲击成分的最优低共振分量;计算其多点峭度谱,提取低共振分量中包含的故障冲击周期成分;之后设定适当的周期区间,进行解卷积运算分离不同的故障特征;通过包络解调,分析谱图中突出的故障特征频率进而识别故障类型。实验平台模拟了滚动轴承两种和三种故障的复合情况,并对所提算法进行了验证,结果表明该方法可有效的从复合故障中提取出各类故障特征,实现故障诊断。 展开更多
关键词 振动信号 复合故障 故障诊断 RSSD 最优最小熵解卷积修正
在线阅读 下载PDF
ANSMD方法及其在齿轮故障诊断中的应用 被引量:3
5
作者 潘海洋 蒋婉婉 +1 位作者 郑近德 潘紫微 《振动与冲击》 EI CSCD 北大核心 2021年第21期113-119,共7页
针对传统信号分析方法难以有效处理具有非平稳、非线性特性信号的问题,提出了一种自适应非线性稀疏模态分解方法(adaptive nonlinear sparse mode decomposition,ANSMD)。该方法通过将奇异局部线性算子约束到信号分解中,自适应地将一个... 针对传统信号分析方法难以有效处理具有非平稳、非线性特性信号的问题,提出了一种自适应非线性稀疏模态分解方法(adaptive nonlinear sparse mode decomposition,ANSMD)。该方法通过将奇异局部线性算子约束到信号分解中,自适应地将一个复杂信号分解为若干个瞬时频率具有物理意义的局部窄带分量,以局部窄带分量作为基函数进行迭代,从而逼近原始信号来完成信号的分解,进而得到具有完整时频分布的分量信号。通过仿真信号和齿轮裂纹故障信号进行试验验证,结果表明,相对于经验模态分解、局部特征尺度分解以及变分模态分解方法,ANSMD方法在抑制模态混叠、鲁棒性等方面具有明显的优势,并可以有效的诊断齿轮故障。 展开更多
关键词 信号处理 齿轮 故障诊断 自适应非线性稀疏模态分解(ANSMD)
在线阅读 下载PDF
基于迭代自适应稀疏分解的雷达信号去噪 被引量:1
6
作者 樊甫华 《现代雷达》 CSCD 北大核心 2013年第6期34-37,41,共5页
稀疏分解能有效分离信号和噪声,因此适用于信号去噪。文中构造了雷达回波稀疏表示的冗余字典,字典原子与目标回波波形匹配,基于该字典的雷达回波信号稀疏度就是目标数。针对稀疏度自适应匹配追踪算法进行低信噪比信号稀疏分解时的不足,... 稀疏分解能有效分离信号和噪声,因此适用于信号去噪。文中构造了雷达回波稀疏表示的冗余字典,字典原子与目标回波波形匹配,基于该字典的雷达回波信号稀疏度就是目标数。针对稀疏度自适应匹配追踪算法进行低信噪比信号稀疏分解时的不足,提出了一种迭代自适应匹配追踪算法,采用规范化的残差之差作为迭代终止条件,使得稀疏分解过程能依据噪声水平自适应终止,以逐次逼近方式估计信号稀疏度,改善了稀疏分解的精度。仿真实验结果表明,该算法在低信噪比以及稀疏度未知的条件下,实现了雷达回波信号的准确稀疏分解,极大地提高了信噪比。 展开更多
关键词 迭代自适应 稀疏分解 匹配追踪 冗余字典 雷达信号
在线阅读 下载PDF
基于稀疏指标的优化变分模态分解方法 被引量:2
7
作者 张露 理华 +2 位作者 崔杰 王晓东 肖灵 《振动与冲击》 EI CSCD 北大核心 2023年第8期234-250,共17页
针对复合信号源信号数目未知,无法正确预设分解模态数K值而不能对信号进行有效变分模态(variational mode decomposition,VMD)的问题,提出了一种基于稀疏指标的优化VMD法。该方法基于VMD所构建变分模型中各个分量的稀疏先验知识,实现了... 针对复合信号源信号数目未知,无法正确预设分解模态数K值而不能对信号进行有效变分模态(variational mode decomposition,VMD)的问题,提出了一种基于稀疏指标的优化VMD法。该方法基于VMD所构建变分模型中各个分量的稀疏先验知识,实现了VMD自适应寻优K值,其将最佳K值确定为稀疏指标由上升至下降的转折点;在计算VMD各个分量的稀疏度时,考虑到不同分量间的能量差异加入了能量权值因子,最后将稀疏指标确定为分解后各分量边际谱稀疏度的平均值。仿真信号与实际信号分解试验验证表明:相较于其他两种VMD的K值确定方法,该方法确定的K值结果更为准确,实现的优化VMD自适应性更强,较其他信号分解法如经验模态分解(empirical mode decomposition,EMD)有更好的分解效果,为源信号数目未知的复合信号VMD提供了新思路;此外,噪声的鲁棒性试验证明所提基于稀疏指标的优化VMD法还具有一定的抗噪能力,较稳健,可开发应用于实际工程。 展开更多
关键词 复合信号分解 变分模态分解(VMD) 分解模态数 稀疏指标 自适应寻优
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部