期刊文献+
共找到1,481篇文章
< 1 2 75 >
每页显示 20 50 100
Modeling and sliding mode control based on inverse compensation of piezo-positioning system
1
作者 LI Zhi-bin XIN Yuan-ze +1 位作者 ZHANG Jian-qiang SUN Chong-shang 《中国光学(中英文)》 北大核心 2025年第1期170-185,共16页
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis... In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system. 展开更多
关键词 piezo-positioning system hysteresis nonlinearity Hammerstein model Prandtl-Ishlinskii(P-I)model system identification sliding mode control
在线阅读 下载PDF
Neural network based adaptive sliding mode control of uncertain nonlinear systems 被引量:4
2
作者 Ghania Debbache Noureddine Goléa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期119-128,共10页
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat... The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results. 展开更多
关键词 nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness.
在线阅读 下载PDF
New adaptive quasi-sliding mode control for nonlinear discrete-time systems 被引量:11
3
作者 Wang Weihong1,2 & Hou Zhongsheng3 1. School of Tra?c and Transportation, Beijing Jiaotong Univ., Beijing 100044, P. R. China 2. Dept. of Automation, Taiyuan Univ. of Science & Technology, Taiyuan 030024, P. R. China 3. Advanced Control Systems Lab, School of Electronics and Information Engineering, Beijing Jiaotong Univ., Beijing 100044, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期154-160,共7页
A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free,... A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent. 展开更多
关键词 quasi-sliding mode control adaptive control model-free control pseudo-partial-derivative
在线阅读 下载PDF
Adaptive fuzzy sliding mode control for robotic airship with model uncertainty and external disturbance 被引量:6
4
作者 Yueneng Yang Jie Wu Wei Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期250-255,共6页
An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approac... An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances. 展开更多
关键词 flight control sliding mode fuzzy system adaptation law station keeping airship.
在线阅读 下载PDF
Global robust optimal sliding mode control for uncertain affine nonlinear systems 被引量:5
5
作者 Pang Haiping Chen Xia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期838-843,共6页
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy... The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR. 展开更多
关键词 robust control optimal control sliding mode control nonlinear systems uncertain systems exact linearization.
在线阅读 下载PDF
Finite-time adaptive sliding mode control for heavyweight airdrop operations 被引量:4
6
作者 Ri Liu Xiuxia Sun +1 位作者 Wenhan Dong Dong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期338-346,共9页
This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior k... This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior knowledge of the bounds. On the basis of feedback linearization of the aircraft-cargo motion system, a novel integral sliding mode flight control law with gains adaptation is proposed. It contains a nominal control law used to achieve finite-time stabilization performance and a compensated control law used to reject the uncertainties. The switching gains of the compensated control law are tuned using adaptation algorithms, and the knowledge of the bounds of the uncertainties is not required to be known in advance. Meanwhile, the severe chattering of the sliding mode control that caused by high switching gains is effectively reduced. The controller and its performance are evaluated on a transport aircraft performing a maximum load airdrop task in a number of simulation scenarios. 展开更多
关键词 flight control nonlinear system sliding mode control adaptive control finite-time stability
在线阅读 下载PDF
Decentralized model reference adaptive sliding mode control based on fuzzy model 被引量:4
7
作者 Gu Haijun Zhang Tianping Shen Qikun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期182-186,192,共6页
A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approx... A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach. 展开更多
关键词 decentralized control model reference adaptive control sliding mode control fuzy model global stability.
在线阅读 下载PDF
Sliding mode H_∞ control for a class of uncertain nonlinear state-delayed systems 被引量:4
8
作者 Wu Ligang Wang Changhong Gao Huijun Zhang Lixian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期576-585,共10页
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the... A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 sliding mode control H∞ control nonlinearITY state-delayed system linear matrix inequality (LMIs)
在线阅读 下载PDF
Adaptive sliding mode backstepping control for near space vehicles considering engine faults 被引量:5
9
作者 ZHAO Jing JIANG Bin +2 位作者 XIE Fei GAO Zhifeng XU Yufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期343-351,共9页
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin... A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance. 展开更多
关键词 fault tolerant control adaptive sliding mode(ASM) engine fault near space vehicle(NSV)
在线阅读 下载PDF
Adaptive neural network based sliding mode altitude control for a quadrotor UAV 被引量:4
10
作者 Hadi RAZMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2654-2663,共10页
Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the ... Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results. 展开更多
关键词 adaptive sliding mode controller analog neural network(ANN) altitude control of quadrotor parametric uncertainty
在线阅读 下载PDF
Fast self-adapting high-order sliding mode control for a class of uncertain nonlinear systems 被引量:3
11
作者 GUO Fuhui LU Pingli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期690-699,共10页
A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced i... A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results. 展开更多
关键词 adaptive control law geometric homogeneity high-order sliding mode(HOSM) integral sliding mode(ISM)
在线阅读 下载PDF
Constrained sliding mode control of nonlinear fractional order input affine systems 被引量:1
12
作者 TAHMINEH Vedadi Moghaddam SEYYED KAMALEDDIN Yadavar Nikravesh MOHAMMAD Azam Khosravi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期995-1006,共12页
Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the sys... Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the system states converge to the sliding surface at a determined finite time.To eliminate the chattering in the sliding mode and make the input controller bounded,hyperbolic tangent is used for designing the proposed fractional order sliding surface.Finally,the stability of the closed loop system using this bounded sliding mode controller is guaranteed by Lyapunov theory.A comparison with the integer order case is then presented and fractional order nonlinear polynomial systems are also studied as the special case.Finally,simulation results are provided to show the effectiveness of the designed controller. 展开更多
关键词 CONSTRAINED sliding mode control nonlinear fractionalorder SYSTEMS INPUT AFFINE SYSTEMS
在线阅读 下载PDF
Consensus of second-order nonlinear multi-agent systems via sliding mode observer and controller 被引量:1
13
作者 Xiaolei Li Xiaoyuan Luo +2 位作者 Shaobao Li Jianjin Li Xinping Guan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期756-765,共10页
This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order ... This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order sliding mode observer is designed to estimate the velocity. Then a distributed discontinuous control law based on first-order SMC is presented to solve the consensus problem. Moreover, to overcome the chatting problem, two controllers based on the boundary layer method and the super-twisting algorithm respectively are presented. It is shown that the MASs will achieve consensus under some given conditions. Some examples are provided to demonstrate the effectiveness of the proposed control laws. 展开更多
关键词 nonlinear multi-agent system sliding mode observer CONSENSUS sliding mode controller
在线阅读 下载PDF
Adaptive sliding mode control of modular self-reconfigurable spacecraft with time-delay estimation 被引量:1
14
作者 Xin-hong Li Zhi-bin Zhang +4 位作者 Ji-ping An Xin Zhou Gang-xuan Hu Guo-hui Zhang Wan-xin Man 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第12期2170-2180,共11页
The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground,... The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering. 展开更多
关键词 adaptive sliding mode control(ASMC) Time delay control Time delay estimation Modular self-reconfigurable spacecraft Uncertainty Coordinated control
在线阅读 下载PDF
Decoupled nonsingular terminal sliding mode control for affine nonlinear systems 被引量:1
15
作者 Yueneng Yang Ye Yan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期192-200,共9页
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p... A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC). 展开更多
关键词 nonlinear control feedback linearization terminal sliding mode control nonsingular affine nonlinear system.
在线阅读 下载PDF
Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher
16
作者 郭亚军 马大为 +1 位作者 王晓峰 乐贵高 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第3期140-144,共5页
An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapun... An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapunov sense and make the servo system track the instruction of reference position globally and asymptotically. In addition, the sliding mode control can restrain the effects of parameter uncertainties and external disturbance. The functions of adaptive mechanism and sliding mode control are analyzed through the simulation in the different conditions.The simulation results illustrate that the method is applicable and robust. 展开更多
关键词 automatic control technology rocket launcher sliding mode control adaptive backstepping permanent magnet synchronous motor
在线阅读 下载PDF
Adaptive fuzzy integral sliding mode pressure control for cutter feeding system of trench cutter
17
作者 田启岩 魏建华 +1 位作者 方锦辉 国凯 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3302-3311,共10页
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ... A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa. 展开更多
关键词 electro-hydraulic system cutter feeding system feeding pressure control adaptive fuzzy integral sliding mode control
在线阅读 下载PDF
Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode 被引量:15
18
作者 Jie Wang Qun Zong +1 位作者 Bailing Tian Helong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期288-295,共8页
The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings ... The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy. 展开更多
关键词 flexible air-breathing hypersonic vehicle nonlinear robust controller high order sliding mode control output tracking control
在线阅读 下载PDF
Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones 被引量:14
19
作者 ZHANG Tian-Ping YI Yang 《自动化学报》 EI CSCD 北大核心 2007年第1期96-100,共5页
A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle o... A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero. 展开更多
关键词 DEAD-ZONE fuzzy control adaptive control sliding mode control Nussbaum function
在线阅读 下载PDF
Time-varying sliding mode control of missile based on suboptimal method 被引量:4
20
作者 LI Zongxing ZHANG Rui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期700-710,共11页
This paper proposes a time-varying sliding mode control method to address nonlinear missile body kinematics based on the suboptimal control theory.The analytical solution of suboptimal time-varying sliding surface and... This paper proposes a time-varying sliding mode control method to address nonlinear missile body kinematics based on the suboptimal control theory.The analytical solution of suboptimal time-varying sliding surface and the corresponding suboptimal control law are obtained by solving the state-dependent Riccati equation analytically.Then,the Lyapunov method is used to analyze the motion trend in sliding surface and the asymptotic stability of the closed-loop system is validated.The suboptimal control law is transformed to the form of pseudo-angle-of-attack feedback.The simulation results indicate that the satisfactory performance can be obtained and the control law can overcome the influence of parameter errors. 展开更多
关键词 suboptimal control Riccati equation analytic solution sliding mode control nonlinear control
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部