The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
In recent years, as the exploration practices extend into more complicated formations, conventional well log interpretation has often shown its inaccuracy and limitations in identifying hydrocarbons. The Permian Wuton...In recent years, as the exploration practices extend into more complicated formations, conventional well log interpretation has often shown its inaccuracy and limitations in identifying hydrocarbons. The Permian Wutonggou Formation hosts typical clastic reservoirs in the Eastern Junggar Basin. The sophisticated lithology characteristics cause complex pore structures and fluid properties. These all finally cause low well testing agreement rate using conventional methods. Eleven years' recent statistics show that 12 out of 15 water layers have been incorrectly identified as being oil or oil/water layers by conventional well log interpretation. This paper proposes a methodology called intelligent prediction and identification system (IPIS). Firstly, parameters reflecting lithological, petrophysical and electrical responses which are greatly related to reservoir fluids have been selected carefully. They are shale content (Vsh), numbered rock type (RN), porosity (φ), permeability (K), true resistivity (RT) and spontaneous-potential (SP). Secondly, Vsh, φ and K are predicted from well logs through artificial neural networks (ANNs). Finally, all the six parameters are input into a neuro-fuzzy inference machine (NFIM) to get fluids identification results. Eighteen new layers of 145.3 m effective thickness were examined by IPIS. There is full agreement with well testing results. This shows the system's accuracy and effectiveness.展开更多
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
基金financially supported by the National Science and Technology Major Demonstration Project 19 (2011ZX05062-008)
文摘In recent years, as the exploration practices extend into more complicated formations, conventional well log interpretation has often shown its inaccuracy and limitations in identifying hydrocarbons. The Permian Wutonggou Formation hosts typical clastic reservoirs in the Eastern Junggar Basin. The sophisticated lithology characteristics cause complex pore structures and fluid properties. These all finally cause low well testing agreement rate using conventional methods. Eleven years' recent statistics show that 12 out of 15 water layers have been incorrectly identified as being oil or oil/water layers by conventional well log interpretation. This paper proposes a methodology called intelligent prediction and identification system (IPIS). Firstly, parameters reflecting lithological, petrophysical and electrical responses which are greatly related to reservoir fluids have been selected carefully. They are shale content (Vsh), numbered rock type (RN), porosity (φ), permeability (K), true resistivity (RT) and spontaneous-potential (SP). Secondly, Vsh, φ and K are predicted from well logs through artificial neural networks (ANNs). Finally, all the six parameters are input into a neuro-fuzzy inference machine (NFIM) to get fluids identification results. Eighteen new layers of 145.3 m effective thickness were examined by IPIS. There is full agreement with well testing results. This shows the system's accuracy and effectiveness.