Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurri...In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions.In this study,for the first time,the adaptive neuro-fuzzy inference system(ANFIS)is optimized using the particle swarm optimization(PSO)algorithm,and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes located in sedimentary beds.Afterward,six ANFIS-PSO models are developed by means of parameters affecting the scour depth.Then,the superior model is detected through sensitivity analysis.This model has the function of all input parameters.The calculated correlation coefficient and scatter index for this model are 0.993 and 0.047,respectively.The ratio of the pipe distance from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter.PSO significantly improves the performance of the ANFIS model.Approximately 36% of the scour depths simulated using the ANFIS model have an error less than 5%,whereas the value for ANFIS-PSO is roughly 72%.展开更多
In order to seek the economical, practical and effective method of obtaining the thickness of broken rock zone, an emerging intelligent prediction method with adaptive neuro-fuzzy inference system (ANFIS) was introduc...In order to seek the economical, practical and effective method of obtaining the thickness of broken rock zone, an emerging intelligent prediction method with adaptive neuro-fuzzy inference system (ANFIS) was introduced into the thickness prediction. And the software with functions of creating and applying prediction systems was devel- oped on the platform of MATLAB6.5. The software was used to predict the broken rock zone thickness of drifts at Li- angbei coal mine, Xinlong Company of Coal Industry in Xuchang city of Henan province. The results show that the predicted values accord well with the in situ measured ones. Thereby the validity of the software is validated and it provides a new approach to obtaining the broken zone thickness.展开更多
One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study...One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study aims to apply intelligent methods to predict settlement after constructing central core rockfill dams.Attempts were made in this research to prepare models for predicting settlement of these dams using the information of 35 different central core rockfill dams all over the world and Adaptive Neuro-Fuzzy Interface System(ANFIS) and Gene Expression Programming(GEP) methods.Parameters such as height of dam(H) and compressibility index(Ci) were considered as the input parameters.Finally,a form was designed using visual basic software for predicting dam settlement.With respect to the accuracy of the results obtained from the intelligent methods,they can be recommended for predicting settlement after constructing central core rockfill dams for the future plans.展开更多
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
文摘In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions.In this study,for the first time,the adaptive neuro-fuzzy inference system(ANFIS)is optimized using the particle swarm optimization(PSO)algorithm,and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes located in sedimentary beds.Afterward,six ANFIS-PSO models are developed by means of parameters affecting the scour depth.Then,the superior model is detected through sensitivity analysis.This model has the function of all input parameters.The calculated correlation coefficient and scatter index for this model are 0.993 and 0.047,respectively.The ratio of the pipe distance from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter.PSO significantly improves the performance of the ANFIS model.Approximately 36% of the scour depths simulated using the ANFIS model have an error less than 5%,whereas the value for ANFIS-PSO is roughly 72%.
基金Projects 50474063 and 50490273 supported by National Natural Science Foundation of China
文摘In order to seek the economical, practical and effective method of obtaining the thickness of broken rock zone, an emerging intelligent prediction method with adaptive neuro-fuzzy inference system (ANFIS) was introduced into the thickness prediction. And the software with functions of creating and applying prediction systems was devel- oped on the platform of MATLAB6.5. The software was used to predict the broken rock zone thickness of drifts at Li- angbei coal mine, Xinlong Company of Coal Industry in Xuchang city of Henan province. The results show that the predicted values accord well with the in situ measured ones. Thereby the validity of the software is validated and it provides a new approach to obtaining the broken zone thickness.
文摘One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study aims to apply intelligent methods to predict settlement after constructing central core rockfill dams.Attempts were made in this research to prepare models for predicting settlement of these dams using the information of 35 different central core rockfill dams all over the world and Adaptive Neuro-Fuzzy Interface System(ANFIS) and Gene Expression Programming(GEP) methods.Parameters such as height of dam(H) and compressibility index(Ci) were considered as the input parameters.Finally,a form was designed using visual basic software for predicting dam settlement.With respect to the accuracy of the results obtained from the intelligent methods,they can be recommended for predicting settlement after constructing central core rockfill dams for the future plans.