An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons...An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.展开更多
时序数据存在近因性特点,即变量值普遍依赖近期的历史信息,而现有时序因果推断方法没有充分考虑时序数据的这种特性,在通过假设检验推断不同延迟的因果关系时使用统一的阈值,难以有效推断较弱的因果关系。针对上述问题,提出基于自适应...时序数据存在近因性特点,即变量值普遍依赖近期的历史信息,而现有时序因果推断方法没有充分考虑时序数据的这种特性,在通过假设检验推断不同延迟的因果关系时使用统一的阈值,难以有效推断较弱的因果关系。针对上述问题,提出基于自适应阈值学习的时序因果推断方法:首先提取数据特性,其次根据不同延迟下数据呈现的性质,自动地学习假设检验过程中使用的阈值组合,最后将该阈值组合用于PC(Peter-Clark)算法、PCMCI(Peter-Clark and Momentary Conditional Independence)算法和VAR-LINGAM(Vector AutoRegressive LINear non-Gaussian Acyclic Model)算法的假设检验过程,以得到更准确的因果关系结构。在仿真数据集上的实验结果表明,采用所提方法的自适应PC算法、自适应PCMCI算法和自适应VAR-LINGAM算法的F1值都有所提高。展开更多
基金Projects(51108165, 51178170) supported by the National Natural Science Foundation of China
文摘An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.
文摘时序数据存在近因性特点,即变量值普遍依赖近期的历史信息,而现有时序因果推断方法没有充分考虑时序数据的这种特性,在通过假设检验推断不同延迟的因果关系时使用统一的阈值,难以有效推断较弱的因果关系。针对上述问题,提出基于自适应阈值学习的时序因果推断方法:首先提取数据特性,其次根据不同延迟下数据呈现的性质,自动地学习假设检验过程中使用的阈值组合,最后将该阈值组合用于PC(Peter-Clark)算法、PCMCI(Peter-Clark and Momentary Conditional Independence)算法和VAR-LINGAM(Vector AutoRegressive LINear non-Gaussian Acyclic Model)算法的假设检验过程,以得到更准确的因果关系结构。在仿真数据集上的实验结果表明,采用所提方法的自适应PC算法、自适应PCMCI算法和自适应VAR-LINGAM算法的F1值都有所提高。