期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
1
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
2
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
在线阅读 下载PDF
Hierarchical structured robust adaptive attitude controller design for reusable launch vehicles 被引量:1
3
作者 Guangxue Yu Huifeng Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期813-825,共13页
Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV i... Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC. 展开更多
关键词 reusable launch vehicle (RLV) REENTRY hierarchicalstructured H∞ optimization neutral network adaptive (NNA) atti-tude control.
在线阅读 下载PDF
Adaptive NN stabilization for stochastic systems with discrete and distributed time-varying delays
4
作者 Jing Li Junmin Li Yuli Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期954-966,共13页
A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and ... A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and unknown nonlinear functions in both drift and diffusion terms.First,an extensional stability notion and the related criterion are introduced.Then,a nonlinear observer to estimate the unmeasurable states is designed,and a systematic backstepping procedure to design an adaptive NN output-feedback controller is proposed such that the closed-loop system is stable in probability.The effectiveness of the proposed control scheme is demonstrated via a numerical example. 展开更多
关键词 distributed delay output-feedback stabilization nonlinear observer stochastic nonlinear strict-feedback system adaptive neural network control(ANNC).
在线阅读 下载PDF
Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method 被引量:10
5
作者 杨海 李威 罗成名 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1324-1333,共10页
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil... Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods. 展开更多
关键词 inertial navigation system(INS) wireless sensor network(WSN) mobile target integrated positioning fuzzy adaptive Kalman filter
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部