期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测
1
作者 朱婷 颜七笙 《南京信息工程大学学报》 北大核心 2025年第4期478-493,共16页
针对电力负荷数据存在非线性、时序性等多方面因素导致的预测精度不足等问题,本文提出一种基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测模型.首先,采用随机森林(RF)算法对气象因素进行特征提取,在保证数据特征的同时,降低数据... 针对电力负荷数据存在非线性、时序性等多方面因素导致的预测精度不足等问题,本文提出一种基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测模型.首先,采用随机森林(RF)算法对气象因素进行特征提取,在保证数据特征的同时,降低数据的复杂度;其次,采用自适应噪声完备集合经验模态分解(CEEMDAN)算法对原始负荷数据进行分解,得到若干较为平稳的模态分量;然后,将经过特征提取的气象因素和模态分量作为输入数据,利用BiGRU(双向门控循环单元)-SelfAttention(自注意力机制)模型进行预测,并针对BiGRU-SelfAttention模型的超参数难以选取最优解的问题,引入蜜獾算法(HBA)对BiGRU-SelfAttention模型的超参数进行寻优;最后,将子序列预测结果叠加,得到最终预测结果.以某地实际电力负荷数据为数据集进行对比试验,结果表明,本文所提出的模型具有较高的预测精度,可以为电力系统稳定运行提供可靠依据. 展开更多
关键词 短期负荷预测 随机森林 自适应噪声完备集合经验模态分解 蜜獾算法 双向门控循环单元 自注意力机制
在线阅读 下载PDF
Attention-GRU神经网络辅助的SINS/DVL组合导航算法 被引量:1
2
作者 王立辉 刘恩东 +3 位作者 吴璠 胡桥 郝程鹏 吴敏 《中国惯性技术学报》 EI CSCD 北大核心 2024年第6期565-571,共7页
针对多普勒测速仪(DVL)短时失效导致定位精度下降的问题,提出了一种注意力机制门控循环单元(Attention-GRU)辅助的捷联惯导(SINS)/DVL组合导航算法。当DVL测速有效时,使用SINS/DVL组合导航信息对Attention-GRU神经网络进行训练。当DVL... 针对多普勒测速仪(DVL)短时失效导致定位精度下降的问题,提出了一种注意力机制门控循环单元(Attention-GRU)辅助的捷联惯导(SINS)/DVL组合导航算法。当DVL测速有效时,使用SINS/DVL组合导航信息对Attention-GRU神经网络进行训练。当DVL故障时,使用训练完毕的Attention-GRU神经网络预测DVL速度辅助校正SINS。仿真结果表明:当DVL故障时,Attention-GRU相对纯惯性导航系统和GRU在匀速运动状态的平均速度误差分别减小了71.35%和3.48%,平均位置误差分别减小了34.76%和1.74%;在运动状态变化时平均速度误差分别减小了58.45%和14.67%,平均位置误差分别减小了9.82%和2.27%。 展开更多
关键词 组合导航 自适应卡尔曼滤波 DVL故障 门控循环单元 注意力机制
在线阅读 下载PDF
基于自适应VMD-Attention-BiLSTM的交通流组合预测模型 被引量:15
3
作者 殷礼胜 孙双晨 +2 位作者 魏帅康 田帅帅 何怡刚 《电子测量与仪器学报》 CSCD 北大核心 2021年第7期130-139,共10页
针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。首先,使用自适应变分模态分解将时空交通流... 针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。首先,使用自适应变分模态分解将时空交通流量序列分解为一系列有限带宽模态分量,细化了交通流信息,降低了非平稳性,提升了建模的精确度;其次,利用结合注意力机制的双向长短时记忆网络挖掘分解后交通流量序列中的时空相关性,从而揭示其时空变化规律,从而进一步提升了建模精确度,并且利用改进Adam算法进行网络权值优化,以加速了预测网络的训练收敛速度;最后,将各模态分量预测值叠加求和作为最终交通流预测值。实验结果表明,使用模态分解的预测模型预测性能明显优于未使用模态分解的预测模型,同时自适应VMD-Attention-BiLSTM预测模型相较于EEMD-Attention-BiLSTM预测模型,均方根误差降低了47.1%,该组合预测模型提升了预测精度,并且能够快速预测交通流量时间序列。 展开更多
关键词 短时交通流预测 自适应变分模态分解 双向长短时记忆网络 注意力机制
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:2
4
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
基于双注意力图神经网络的链路预测 被引量:1
5
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 链路预测 图神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
基于自适应光照估计的Retinex-Net矿井图像增强算法
6
作者 田丰 陈婷婷 刘晓佩 《煤炭科学技术》 北大核心 2025年第7期234-248,共15页
随着煤矿智能化建设的逐步推进,智能视频监控系统越来越多的应用于煤矿井下。然而受粉尘、水雾及光源等因素的影响,视频监控系统采集的图像往往存在亮度低、光照不均匀、信息丢失、细节模糊等问题,导致煤矿井下视频监控视觉效果差,极大... 随着煤矿智能化建设的逐步推进,智能视频监控系统越来越多的应用于煤矿井下。然而受粉尘、水雾及光源等因素的影响,视频监控系统采集的图像往往存在亮度低、光照不均匀、信息丢失、细节模糊等问题,导致煤矿井下视频监控视觉效果差,极大影响了后续图像分析与智能决策。因此,研究煤矿井下图像增强方法具有重要意义。针对非均匀照明下井下图像出现的局部区域亮度低和细节特征缺失的问题,提出了一种基于自适应估计的改进Retinex-Net井下图像增强算法。设计了分解网络来分离图像的照度分量和反射分量;在反射分量处理中,引入了融合通道和空间注意力的注意力模块CBAM(Convolutional Block Attention Module),进一步提升图像的细节和对比度,使图像更加清晰;在光照估计网络中构建渐进式的光照优化过程,通过多个网络层的级联,逐步优化光照分量的估计,引入了自校准模块,能够自动调整光照分量的估计值,使其更加接近真实的光照条件,最后将优化后的照度分量和反射分量结合,得到增强后的井下图像。基于自建井下图像数据集,改进算法较其他算法,其平均梯度、峰值信噪比、结构相似性、信息熵分别提高了25%、17%、24%、8%。试验结果表明,该算法能有效地提高光照不均匀照明中暗区域的图像亮度,增加图像细节信息,提高图像质量。 展开更多
关键词 煤矿图像增强 RETINEX理论 注意力机制 自适应光照估计
在线阅读 下载PDF
融合Seq2Seq与时序注意力机制的工艺质量预测
7
作者 阴艳超 施成娟 +1 位作者 邹朝普 刘孝保 《机械科学与技术》 北大核心 2025年第3期453-464,共12页
针对流程工业生产过程整体工序繁多,工序间耦合严重,多维工艺数据间时序关系及其复杂等问题,提出一种融合Seq2Seq与时序注意力机制的高维多尺度工艺过程质量预测方法。在分析多工序工艺数据特点,以及运用Seq2Seq模型进行编码解码过程面... 针对流程工业生产过程整体工序繁多,工序间耦合严重,多维工艺数据间时序关系及其复杂等问题,提出一种融合Seq2Seq与时序注意力机制的高维多尺度工艺过程质量预测方法。在分析多工序工艺数据特点,以及运用Seq2Seq模型进行编码解码过程面临的难题的基础上,引入时序注意力机制来构造长距离变化的时域信息矩阵。设计卷积神经网络和BiLSTM作为编码组件,学习工艺过程时序数据的工艺参数关联性和双向时序关系等潜在深度特征,并结合时序注意力机制抽取关键信息,实现对工艺质量相关的工艺参数时序数据的非线性相关特征和时序依赖性的自适应地学习。最后,通过对制丝生产工艺过程质量的单输出和多输出预测实验,验证了所提算法的实用性和有效性,为多工序耦合的流程制造过程质量的精准预测提供了方法和实现途径。 展开更多
关键词 多工序时序耦合 工艺质量预测 Seq2Seq 时序注意力机制 自适应学习
在线阅读 下载PDF
改进YOLOv7算法的钢板表面缺陷检测方法
8
作者 孙超 刘均学 +3 位作者 陈正超 周永康 张承瑞 丁建军 《实验室研究与探索》 北大核心 2025年第1期19-23,29,共6页
针对钢板表面不同种类缺陷特征难以辨别的问题,提出了一种基于改进YOLOv7算法的钢板表面缺陷检测方法。使用特征提取网络(C2f)加强特征信息的提取,在不影响原始梯度路径的情况下提高神经网络对重要特征的学习能力,避免缺陷的误检。结合... 针对钢板表面不同种类缺陷特征难以辨别的问题,提出了一种基于改进YOLOv7算法的钢板表面缺陷检测方法。使用特征提取网络(C2f)加强特征信息的提取,在不影响原始梯度路径的情况下提高神经网络对重要特征的学习能力,避免缺陷的误检。结合空间自适应注意力机制(CA)构建了多路径特征和通道交叉注意力机制(MPCC),提高对细微缺陷的敏感性,避免缺陷的漏检。在此基础上,采用距离交并比损失函数DIoU作为损失函数,降低模型损失函数的复杂度,从而提高模型的实时性和鲁棒性。钢板表面检测实验结果表明,改进YOLOv7算法在NEU-DET数据集上的检测精度达到了83.7%。与YOLOv7算法相比,改进后的算法在检测精度和速度上都有显著提升。 展开更多
关键词 钢板表面缺陷检测 空间自适应注意力机制 改进算法
在线阅读 下载PDF
自然环境下改进YOLOv5对小目标苹果的检测
9
作者 刘子龙 张磊 《系统仿真学报》 北大核心 2025年第8期2124-2138,共15页
针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为... 针对苹果的分布通常会存在遮挡、小目标,以及密集目标等问题,提出了一种改进YOLOv5的目标检测算法。在YOLOv5的基础上加入了坐标注意力机制、感受野模块,以及自适应空间特征融合,加强了对小目标检测的能力。将YOLOv5中使用的CIoU替换为了SIoU,提高了目标检测框的位置预测精度。将部分普通卷积替换为了深度可分离卷积,减少了计算量。实验结果表明:改进YOLOv5的综合性能要优于原始YOLOv5及其他算法,mAP值相比原始YOLOv5提升了9.6%。 展开更多
关键词 智能农业 坐标注意力机制 感受野 自适应空间特征融合 小目标检测 YOLOv5
在线阅读 下载PDF
基于自适应动态图卷积和无参注意力的点云分类分割方法
10
作者 李维刚 李歆怡 +1 位作者 王永强 赵云涛 《计算机应用》 北大核心 2025年第6期1980-1986,共7页
针对传统卷积在处理点云时难以精确提取邻域特征信息和有效融合上下文信息的问题,提出一种基于自适应动态图卷积和无参注意力的点云分类分割方法。首先,通过自适应动态图卷积模块(ADGC)学习不同邻域的特征信息,生成自适应卷积核,并更新... 针对传统卷积在处理点云时难以精确提取邻域特征信息和有效融合上下文信息的问题,提出一种基于自适应动态图卷积和无参注意力的点云分类分割方法。首先,通过自适应动态图卷积模块(ADGC)学习不同邻域的特征信息,生成自适应卷积核,并更新边缘特征,从而精确提取点云的局部邻域特征;其次,设计残差结构学习点云的空间位置信息,以精确捕获点对之间的几何结构,更好地保留和提取细节特征;最后,为了更好地关注和提取局部几何特征,结合无参注意力模块(PFA)与卷积操作,增强邻域之间的联系和模型的上下文感知能力。实验结果表明,与PointNet相比,所提方法在多种任务上具有显著优势,具体地,所提方法的分类任务的总体精度(OA)提升了4.6个百分点,部件分割任务实例的平均交并比(mIoU)提升了2.3个百分点,语义分割任务的mIoU提升了24.6个百分点。可见,所提方法进一步增强了对复杂几何结构的理解和表征能力,在各种任务中实现了更精确的特征提取和实验性能。 展开更多
关键词 点云 分类分割 自适应 动态图卷积 注意力机制
在线阅读 下载PDF
跨建筑短期负荷预测的深度迁移学习方法
11
作者 闫秀英 门琪 吴晓雪 《电力系统及其自动化学报》 北大核心 2025年第4期88-97,共10页
为解决深度学习预测模型在数据不足时准确性受限的问题,提出一种结合Transformer的交叉注意力(cross-attention in Transformer,CATrans)机制和域分离网络(domain separation networks,DSN)的深度迁移学习方法——CATrans-DSN,用于短期... 为解决深度学习预测模型在数据不足时准确性受限的问题,提出一种结合Transformer的交叉注意力(cross-attention in Transformer,CATrans)机制和域分离网络(domain separation networks,DSN)的深度迁移学习方法——CATrans-DSN,用于短期跨建筑负荷预测。CATrans特征提取器利用注意力机制来学习源域和目标域负荷数据的域共有和私有时间特征,并利用共有特征进行知识迁移;特征重构器作为辅助模块,对源域和目标域数据进行数据重构;由回归预测器将学习到的特征转化为预测值。最后,利用在源域和目标域上训练得到的建筑负荷预测模型,直接用于目标建筑的负荷预测。实验结果表明,所提出的方法有效地提高了数据稀缺情况下的预测准确性和模型泛化能力。 展开更多
关键词 负荷预测 交叉注意力机制 重构域适应 迁移学习
在线阅读 下载PDF
基于自注意力和域自适应的风电机组异常状态检测
12
作者 王晓霞 郑肖剑 +2 位作者 柳璞 王荣康 王涛 《振动与冲击》 北大核心 2025年第10期269-277,310,共10页
针对新建风电机组历史数据不足及不同机组间数据分布差异大的问题,提出一种结合自注意力机制与域自适应网络的风电机组异常状态检测方法。首先,采用编码器-解码器结构对源域和目标域风电机组运行数据进行特征重构,以捕捉潜在的风电模式... 针对新建风电机组历史数据不足及不同机组间数据分布差异大的问题,提出一种结合自注意力机制与域自适应网络的风电机组异常状态检测方法。首先,采用编码器-解码器结构对源域和目标域风电机组运行数据进行特征重构,以捕捉潜在的风电模式和领域信息。然后,设计自注意力模块,通过与域判别器的对抗学习提取跨域共享特征,根据跨域信息的匹配度自动加权不同机组的领域信息,实现动态特征重构,从而提升模型对不同机组数据分布变化的适应性。最后,计算重构误差作为异常分数用于异常检测。实际风电机组运行数据的结果表明,该方法在历史数据有限的条件下能够高效地识别风机异常状态,相较于其他深度学习和深度迁移学习方法,显著提升了检测精度。 展开更多
关键词 风电机组 异常检测 域自适应 自注意力机制 对抗训练
在线阅读 下载PDF
融合注意机制的多尺度自适应空洞卷积面部情感识别方法
13
作者 王春影 孟天宇 +2 位作者 张震 葛雄心 杨继伟 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期90-97,共8页
针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale di... 针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale dilated convolution,DAM-ADCNN)。模型通过双分支注意力机制生成特征映射,表征面部动作单元的局部和全局分布及关联关系;利用多尺度空洞卷积提取面部不连续动作单元的关键特征;采用自适应方式动态调整不同尺度关联特征的权重,以有效减少无用信息的干扰。结果表明,DAM-ADCNN模型在情感识别任务中的表现优于现有方法。在DEAP数据集的唤醒和效价维度上,模型的识别准确率分别提升了3.66%和3.99%。同时,在CK+数据集上,模型的识别准确率提高了3.93%。这些结果证明了DAM-ADCNN模型在面部表情情感识别中的有效性。 展开更多
关键词 面部情感识别 双分支注意力机制 空洞卷积 自适应权重
在线阅读 下载PDF
基于几何蒸馏和特征自适应的磁共振成像重建
14
作者 朵琳 任勇 +1 位作者 许渤雨 杨新 《北京航空航天大学学报》 北大核心 2025年第6期1946-1954,共9页
虽然现有基于深度学习的压缩感知磁共振成像(CS-MRI)方法已经取得了较好的效果,但这些方法的可解释性仍然面临挑战,并且从理论分析到网络设计的过渡并不够自然。为解决上述问题,提出深度双域几何蒸馏特征自适应网络(DDGD-FANet)。该深... 虽然现有基于深度学习的压缩感知磁共振成像(CS-MRI)方法已经取得了较好的效果,但这些方法的可解释性仍然面临挑战,并且从理论分析到网络设计的过渡并不够自然。为解决上述问题,提出深度双域几何蒸馏特征自适应网络(DDGD-FANet)。该深度展开网络将磁共振成像重建优化问题迭代展开成3个子部分:数据一致性模块、双域几何蒸馏模块和自适应网络模块,不仅可以补偿重建图像丢失的上下文信息,恢复更多的纹理细节,还可以去除全局伪影,进一步提高重建效果。在公开数据集使用3种不同的采样模式进行实验,结果表明:DDGD-FANet在3种采样模式下均取得了更高的峰值信噪比和结构相似性指数,在笛卡儿10%压缩感知(CS)比率下,峰值信噪比较迭代收缩阈值算法(ISTA-Net+)、快速ISTA(FISTA)-Net和DGDN模型分别提高了5.01 dB、4.81 dB和3.34 dB。 展开更多
关键词 磁共振成像 图像重建 深度学习 几何蒸馏 自适应网络 注意力机制
在线阅读 下载PDF
具有特征交互适应的3D双手网格重建方法
15
作者 刘佳 张家辉 陈大鹏 《信号处理》 北大核心 2025年第7期1291-1302,共12页
从单张RGB图像中实现双手的3D交互式网格重建是一项极具挑战性的任务。由于双手之间的相互遮挡以及局部外观相似性较高,导致部分特征提取不够准确,从而丢失了双手之间的交互信息并使重建的手部网格与输入图像出现不对齐等问题。为了解... 从单张RGB图像中实现双手的3D交互式网格重建是一项极具挑战性的任务。由于双手之间的相互遮挡以及局部外观相似性较高,导致部分特征提取不够准确,从而丢失了双手之间的交互信息并使重建的手部网格与输入图像出现不对齐等问题。为了解决上述问题,本文首先提出一种包含两个部分的特征交互适应模块,第一部分特征交互在保留左右手分离特征的同时生成两种新的特征表示,并通过交互注意力模块捕获双手的交互特征;第二部分特征适应则是将此交互特征利用交互注意力模块适应到每只手,为左右手特征注入全局上下文信息。其次,引入三层图卷积细化网络结构用于精确回归双手网格顶点,并通过基于注意力机制的特征对齐模块增强顶点特征和图像特征的对齐,从而增强重建的手部网格和输入图像的对齐。同时提出一种新的多层感知机结构,通过下采样和上采样操作学习多尺度特征信息。最后,设计相对偏移损失函数约束双手的空间关系。在InterHand2.6M数据集上的定量和定性实验表明,与现有的优秀方法相比,所提出的方法显著提升了模型性能,其中平均每关节位置误差(Mean Per Joint Position Error,MPJPE)和平均每顶点位置误差(Mean Per Vertex Position Error,MPVPE)分别降低至7.19 mm和7.33 mm。此外,在RGB2Hands和EgoHands数据集上进行泛化性实验,定性实验结果表明所提出的方法具有良好的泛化能力,能够适应不同环境背景下的手部网格重建。 展开更多
关键词 双手重建 注意力机制 特征交互适应 特征对齐 图卷积网络
在线阅读 下载PDF
LFTA:轻量级特征提取与加性注意力的特征匹配方法
16
作者 郭志强 汪子涵 +1 位作者 王永圣 陈鹏羽 《电子与信息学报》 北大核心 2025年第8期2872-2882,共11页
近年来,特征匹配技术在计算机视觉任务中得到了广泛应用,如3维重建、视觉定位和即时定位与地图构建(SLAM)等。然而,现有匹配算法面临精度与效率的权衡困境:高精度方法常因复杂模型设计导致计算复杂度攀升,难以满足实时需求;而快速匹配... 近年来,特征匹配技术在计算机视觉任务中得到了广泛应用,如3维重建、视觉定位和即时定位与地图构建(SLAM)等。然而,现有匹配算法面临精度与效率的权衡困境:高精度方法常因复杂模型设计导致计算复杂度攀升,难以满足实时需求;而快速匹配策略通过特征简化或近似计算虽实现亚线性时间复杂度,却因表征能力受限与误差累积,无法达到实际应用中的精度要求。为此,该文提出一种基于加性注意力的轻量化特征匹配方法—LFTA。该方法通过轻量化多尺度特征提取网络生成高效特征表示,并引入三重交换融合注意力机制,提升了在复杂场景下的特征鲁棒性;同时提出了自适应高斯核生成关键点热力图和动态非极大值抑制算法,以提高关键点的提取精度;此外,该文设计了结合加性Transformer注意力机制和深度可分离卷积位置编码的轻量化模块,对粗粒度匹配结果进行微调,从而生成高精度的像素级匹配点对。为了验证所提方法的有效性,在MegaDepth和ScanNet两个公开数据集上进行了实验评估,并通过消融实验和对比实验验证了各模块的贡献和模型的综合性能。实验结果表明,所提算法在姿态估计上的性能相比于轻量化的算法有显著提升,且与性能较高的算法相比推理时间有显著下降,实现了高效性与高精度的平衡。 展开更多
关键词 特征匹配 加性注意力机制 轻量化网络 自适应关键点提取 像素级匹配
在线阅读 下载PDF
改进型密集递归残差U-Net的皮肤病变图像分割
17
作者 赵德春 袁杨 +2 位作者 秦璐 韦莉 叶昌荣 《中国生物医学工程学报》 北大核心 2025年第3期291-300,共10页
皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实... 皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实现皮肤病变区域自动分割。首先,将编码层和解码层中的原始卷积块优化为递归残差卷积模块,并且使用密集连接,缓解了梯度消失问题;其次,引入特征自适应模块,通过加强有效特征和抑制无关背景噪声,增强相邻特征之间的融合程度;接着,设计双重注意力机制,其中空间注意力增大全局信息的利用效率,通道注意力用于加强通道特征间的相关性,提升网络对皮肤病变区域分割的准确率,同时采用联合Dice系数与交叉熵的损失函数训练分割网络,解决皮肤镜图像中类别不平衡的问题;最后,采用ISIC 2017皮肤病变数据集中的2000余张图片进行了消融实验和对比实验。实验结果表明,IDR2U-Net模型在Jaccard、Dice系数和准确率上分别达到了78.86%、86.92%和94.61%。改进后的模型不仅提高了精度,还实现了更精细的图像分割,特别是在处理边界模糊图像时,能有效减少欠分割现象。 展开更多
关键词 皮肤病变图像分割 U型网络 密集递归残差卷积模块 特征自适应模块 双重注意力机制
在线阅读 下载PDF
UBA-OWDT:一种新型的开放世界目标检测网络
18
作者 谢斌红 唐彪 张睿 《计算机工程与应用》 北大核心 2025年第8期215-225,共11页
开放世界目标检测(open world object detection,OWOD)的主要任务是检测已知类别和识别未知目标。此外,模型在下一个训练阶段中逐步学习已知新类。针对OW-DETR(open-world detection transformer)中未知类召回率偏低、密集目标与小目标... 开放世界目标检测(open world object detection,OWOD)的主要任务是检测已知类别和识别未知目标。此外,模型在下一个训练阶段中逐步学习已知新类。针对OW-DETR(open-world detection transformer)中未知类召回率偏低、密集目标与小目标漏检等问题,提出了一种UBA-OWDT(UCSO,BiStrip and AFDF of open-world detection transformer)开放世界目标检测网络。针对未知类召回率偏低的问题,对未知类评分优化(unknown class scoring optimization,UCSO),将生成的浅层类激活图与聚合类激活图融合,获取细粒度特征信息,提高未知类的目标评分,进而提升未知类的召回率;针对小目标漏检问题,将双条状注意力(spatial attention based on strip pooling and strip convolution,BiStrip)应用于输入特征图,捕获长程依赖,保留目标精确的位置信息,增强感兴趣目标的表征,以检测小目标;针对密集目标漏检问题,采用自适应特征动态融合(adaptive feature dynamic fusion,AFDF),根据目标大小和形状,获得不同的感受野,动态分配注意力权重,关注目标的重要部分,融合不同层级的特征,以检测密集目标。在OWOD数据集的实验结果表明,未知类召回率增值范围在0.7~1.5个百分点,mAP增值范围在0.6~1.2个百分点,与现有的开放世界目标检测方法相比,在召回率偏低、密集目标与小目标漏检问题上具有一定的优势。 展开更多
关键词 开放世界目标检测 自适应特征动态融合 未知类评分优化 注意力机制
在线阅读 下载PDF
基于SSA优化的Transformer-BiGRU短期风电功率预测
19
作者 包广斌 杨龙龙 +1 位作者 范超林 李焕 《电子测量技术》 北大核心 2025年第13期139-147,共9页
为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构... 为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构建了一个高效的组合模型。针对Transformer-BiGRU模型超参数优化困难的问题,引入SSA麻雀搜索算法对超参数进行优化,进一步提升预测精度。最后,以龙源电力风电预测数据集为例,通过对比实验和消融实验验证了该模型优于其他传统模型和模型中各组件的有效性,实验结果表明该方法的R 2达到了0.9810。 展开更多
关键词 风电预测 麻雀搜索算法 自适应噪声完备经验模态分解 双向门控循坏单元 自注意力机制
在线阅读 下载PDF
基于图像内容理解的判别性类别提示学习
20
作者 王楠井 刘阿建 +4 位作者 梁凤梅 张小梅 万军 谢珺 雷震 《电子学报》 北大核心 2025年第2期493-502,共10页
近年来,通过图像与文本的联合表示,基于对比语言-图像预训练(Contrastive Language-Image Pre-training,CLIP)的方法将文本信息作为分类器的权值,在通用图像识别任务中展现出卓越性能.但是现有方法仅单独构建类别文本提示,比如上下文优... 近年来,通过图像与文本的联合表示,基于对比语言-图像预训练(Contrastive Language-Image Pre-training,CLIP)的方法将文本信息作为分类器的权值,在通用图像识别任务中展现出卓越性能.但是现有方法仅单独构建类别文本提示,比如上下文优化(Context Optimization,CoOp)和条件上下文优化(Conditional Context Optimization,CoCoOp)等,没有考虑图像的内容语义信息与类别的重要性,限制了模型对图像类别的理解与判别.为了解决上述问题,本文在CLIP的基础上提出了一种新方法:基于图像内容理解的判别性类别提示学习(Discriminative Category Prompt Learning based on image content understanding,DCPL),借助图像中丰富的内容特征来学习文本提示,提高文本提示对类别的判别性.具体来说,DCPL包含提示生成(Prompt Generation,PG)模块和文本监督(Text Supervision,TS)模块.PG模块将图像特征和初始化的查询向量作为输入,通过自注意力机制和交叉注意力机制使输出的文本提示中包含充分的图像语义信息;TS模块将固定的类别提示模板作为监督,为可学习文本提示在类别层面和logits层面注入类别信息,增强了类别的重要性.最后,DCPL在ImageNet、Caltech101和Oxford-Pets等11个公开分类数据集上的16-shots平均准确率达到了81.84%,较以往最优方法Cross-Modal的平均准确率提升了0.98个百分点. 展开更多
关键词 视觉-语言模型 图像识别 提示调优 注意力机制 文本监督(TS) 适配器微调 TRANSFORMER
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部