期刊文献+
共找到816篇文章
< 1 2 41 >
每页显示 20 50 100
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics 被引量:2
1
作者 TIAN Jing ZHANG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期24-30,共7页
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s... In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results. 展开更多
关键词 adaptive radar beamforming training sample selection non-homogeneous detector electronic jamming jamming suppression
在线阅读 下载PDF
Double adaptive selection strategy for MOEA/D 被引量:2
2
作者 GAO Jiale XING Qinghua +1 位作者 FAN Chengli LIANG Zhibing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期132-143,共12页
Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named... Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution. 展开更多
关键词 MULTI-OBJECTIVE optimization adaptive OPERATOR selection adaptive NEIGHBOR selection decomposition.
在线阅读 下载PDF
Adaptive controller design based on input-output signal selection for voltage source converter high voltage direct current systems to improve power system stability 被引量:2
3
作者 Abdolkhalegh Hamidi Jamal Beiza +1 位作者 Ebrahim Babaei Sohrab Khanmohammadi 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2254-2267,共14页
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w... An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance. 展开更多
关键词 input-output signal selection online adaptive damping controller nonlinear high voltage direct current power systemstability
在线阅读 下载PDF
Multi-channel differencing adaptive noise cancellation with multi-kernel method 被引量:1
4
作者 Wei Gao Jianguo Huang Jing Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期421-430,共10页
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n... Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment. 展开更多
关键词 adaptive noise cancellation multi-channel differencing multi-kernel learning array signal processing.
在线阅读 下载PDF
部分线性模型的Adaptive LASSO变量选择 被引量:4
5
作者 李锋 卢一强 李高荣 《应用概率统计》 CSCD 北大核心 2012年第6期614-624,共11页
部分线性模型是一类常用的半参数统计模型,本文对部分线性模型的adaptive LASSO参数估计及变量选择方法进行了研究.首先结合截面最小二乘思想和adaptive LASSO估计方法,构造了adaptive LASSO惩罚截面最小二乘估计,并研究了惩罚参数和窗... 部分线性模型是一类常用的半参数统计模型,本文对部分线性模型的adaptive LASSO参数估计及变量选择方法进行了研究.首先结合截面最小二乘思想和adaptive LASSO估计方法,构造了adaptive LASSO惩罚截面最小二乘估计,并研究了惩罚参数和窗宽的选择问题.理论上研究了在一定条件下估计量的相合性和渐近正态性,证明adaptive LASSO估计具有oracle性质.该估计方法便于计算.最后通过模拟研究了估计量的小样本性质,结果表明变量选择和参数估计效果良好. 展开更多
关键词 部分线性模型 变量选择 渐近分布 LASSO adaptive LASSO”
在线阅读 下载PDF
Test selection and optimization for PHM based on failure evolution mechanism model 被引量:8
6
作者 Jing Qiu Xiaodong Tan +1 位作者 Guanjun Liu Kehong L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期780-792,共13页
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse... The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level. 展开更多
关键词 test selection and optimization (TSO) prognostics and health management (PHM) failure evolution mechanism model (FEMM) adaptive simulated annealing genetic algorithm (ASAGA).
在线阅读 下载PDF
An adaptive waveform-detection threshold joint optimization method for target tracking 被引量:5
7
作者 王宏强 夏洪恩 +1 位作者 程永强 王璐璐 《Journal of Central South University》 SCIE EI CAS 2013年第11期3057-3064,共8页
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr... The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error. 展开更多
关键词 cognitive radar adaptive waveform selection target tracking joint optimization detection-tracking system
在线阅读 下载PDF
Adaptive Elastic Net方法在Cox模型变量选择中的研究 被引量:1
8
作者 韦新星 李春红 戴洪帅 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第9期88-94,共7页
将Adaptive Elastic Net方法运用于Cox模型的变量选择中,证明了在一定条件下,Cox模型的Adaptive Elastic Net估计具有组效应性质.数值模拟和具体实例验证了该估计的组效应性质,表明Cox模型的Adaptive Elastic Net方法优于Lasso方法、Ada... 将Adaptive Elastic Net方法运用于Cox模型的变量选择中,证明了在一定条件下,Cox模型的Adaptive Elastic Net估计具有组效应性质.数值模拟和具体实例验证了该估计的组效应性质,表明Cox模型的Adaptive Elastic Net方法优于Lasso方法、Adaptive Lasso方法和Elastic Net方法. 展开更多
关键词 adaptive ELASTIC Net方法 COX模型 变量选择 组效应性质
在线阅读 下载PDF
Adaptive template filter method for image processing based on immune genetic algorithm 被引量:1
9
作者 谭冠政 吴建华 +1 位作者 范必双 江斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期1028-1035,共8页
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona... To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments. 展开更多
关键词 image characteristic template match adaptive template filter wavelet transform elitist selection elitist crossover immune genetic algorithm
在线阅读 下载PDF
基于Adaptive Lasso的两阶段全基因组关联分析方法
10
作者 杨文宇 吴成秀 +1 位作者 肖英杰 严建兵 《作物学报》 CAS CSCD 北大核心 2023年第9期2321-2330,共10页
作为进行全基因组关联分析的主流方法,混合线性模型类方法得到了广泛的应用。但是,现有方法仍存在检测功效不高的问题。本文提出一种基于AdaptiveLasso的2阶段全基因组关联分析方法(two-stage Adaptive Lasso-based genome-wide associa... 作为进行全基因组关联分析的主流方法,混合线性模型类方法得到了广泛的应用。但是,现有方法仍存在检测功效不高的问题。本文提出一种基于AdaptiveLasso的2阶段全基因组关联分析方法(two-stage Adaptive Lasso-based genome-wide association analysis, ALGWAS),该方法在第1阶段通过变量选择方法 Adaptive Lasso筛选出与目标性状相关联的单核苷酸多态性位点(single nucleotide polymorphism, SNP),第2阶段将第1阶段筛选出的SNP作为协变量放入线性模型中进行全基因组扫描。在模拟实验中,ALGWAS方法与3种常用的全基因组关联分析方法fastGWA、GEMMA和EMMAX相比具有最高的检测功效,同时具有较低的错误发现率(falsediscoveryrate,FDR)。将以上4种方法应用到包含1341份材料的玉米CUBIC (Complete-diallel plus Unbalanced Breeding-like Inter-Cross)群体的全基因组关联分析中,ALGWAS方法可检测到与开花期相关基因ZmMADS69、ZmMADS15/31、ZmZCN8和ZmRAP2.7,与株高相关基因ZmBRD1和ZmBR2,与产量相关基因ZmUB2、ZmKRN2和ZmCLE7等,而其他3种常用的全基因组关联分析方法检测功效较低。本研究提出了一种非混合线性模型类的全基因组关联分析方法,对解析微效多基因决定的复杂遗传性状具有更高的检测效率,为基因挖掘提供了新的途径。 展开更多
关键词 玉米 全基因组关联分析 变量选择 adaptive Lasso
在线阅读 下载PDF
自适应聚类中心个数选择:一种联邦学习的隐私效用平衡方法 被引量:1
11
作者 宁博 宁一鸣 +3 位作者 杨超 周新 李冠宇 马茜 《电子与信息学报》 北大核心 2025年第2期519-529,共11页
联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对... 联邦学习是一种分布式机器学习方法,它使多个设备或节点能够协作训练模型,同时保持数据的本地性。但由于联邦学习是由不同方拥有的数据集进行模型训练,敏感数据可能会被泄露。为了改善上述问题,已有相关工作在联邦学习中应用差分隐私对梯度数据添加噪声。然而在采用了相应的隐私技术来降低敏感数据泄露风险的同时,模型精度和效果因为噪声大小的不同也受到了部分影响。为解决此问题,该文提出一种自适应聚类中心个数选择机制(DP-Fed-Adap),根据训练轮次和梯度的变化动态地改变聚类中心个数,使模型可以在保持相同性能水平的同时确保对敏感数据的保护。实验表明,在使用相同的隐私预算前提下DP-Fed-Adap与添加了差分隐私的联邦相似算法(FedSim)和联邦平均算法(FedAvg)相比,具有更好的模型性能和隐私保护效果。 展开更多
关键词 联邦学习 差分隐私保护 梯度聚类 自适应选择
在线阅读 下载PDF
基于改进YOLOv8的汽车门板紧固件检测算法 被引量:1
12
作者 王晓辉 贾韫硕 郭丰娟 《计算机工程与设计》 北大核心 2025年第1期298-306,共9页
针对汽车门板紧固件在复杂场景下存在的检测准确度较低和实时性较差的问题,提出一种小目标改进算法YOLOv8-SOD(small object detection)。在主干网络引入SPD(space-to-depth)模块和自适应权重分配模块,在算法的颈部网络输出位置增加选... 针对汽车门板紧固件在复杂场景下存在的检测准确度较低和实时性较差的问题,提出一种小目标改进算法YOLOv8-SOD(small object detection)。在主干网络引入SPD(space-to-depth)模块和自适应权重分配模块,在算法的颈部网络输出位置增加选择性注意力模块,将CIOU损失函数替换为MPDIOU损失函数。实验结果表明,YOLOv8-SOD算法平均检测精度为99.1%,比模板匹配方法和YOLOv8算法分别提高了9.4%、2%,达到了工厂生产流水线的检测标准,具有实用价值。 展开更多
关键词 汽车门板紧固件检测 小目标 自适应权重分配 无参注意力 选择性注意力 损失函数 深度学习
在线阅读 下载PDF
基于自适应t分布的改进麻雀搜索算法及其应用 被引量:1
13
作者 赵小强 顾鹏 《兰州理工大学学报》 北大核心 2025年第2期78-87,共10页
针对原始麻雀搜索算法全局搜索能力差、局部开发能力弱、易陷入局部最优等问题,提出一种基于自适应t分布的麻雀搜索算法(ATSSA).首先,通过Tent混沌映射初始化种群,增加初始种群的多样性;其次,利用自适应t分布变异算子对个体位置进行扰动... 针对原始麻雀搜索算法全局搜索能力差、局部开发能力弱、易陷入局部最优等问题,提出一种基于自适应t分布的麻雀搜索算法(ATSSA).首先,通过Tent混沌映射初始化种群,增加初始种群的多样性;其次,利用自适应t分布变异算子对个体位置进行扰动,提高算法的全局搜索能力,同时结合动态选择概率来调节引入的t分布变异算子,平衡算法的全局搜索能力;最后,融合精英反向学习策略,在产生最优解的位置进行扰动,产生新解,促使算法跳出局部最优.仿真实验利用10个基准测试函数进行测试,结果表明ATSSA相较于SSA具有更好的寻优能力.将改进后的算法与深度极限学习机构建预测模型,选用辛烷值数据集进行实验,模型预测精度从87.31%提高到99.32%,验证了改进后的算法具有良好的工程应用前景. 展开更多
关键词 麻雀搜索算法 Tent混沌映射 自适应t分布 动态选择策略 精英反向学习
在线阅读 下载PDF
面向低能耗高性能的分类器两阶段数据选择方法
14
作者 崔双双 王宏志 +1 位作者 朱加昊 吴昊 《计算机应用》 北大核心 2025年第6期1703-1711,共9页
针对利用海量数据构建分类模型时训练数据规模大、训练时间长且碳排放量大的问题,提出面向低能耗高性能的分类器两阶段数据选择方法TSDS(Two-Stage Data Selection)。首先,通过修正余弦相似度确定聚类中心,并将样本数据进行基于不相似... 针对利用海量数据构建分类模型时训练数据规模大、训练时间长且碳排放量大的问题,提出面向低能耗高性能的分类器两阶段数据选择方法TSDS(Two-Stage Data Selection)。首先,通过修正余弦相似度确定聚类中心,并将样本数据进行基于不相似点的分裂层次聚类;其次,对聚类结果按数据分布自适应抽样以组成高质量的子样本集;最后,利用子样本集在分类模型上训练,在加速训练过程的同时提升模型精度。在Spambase、Bupa和Phoneme等6个数据集上构建支持向量机(SVM)和多层感知机(MLP)分类模型,验证TSDS的性能。实验结果表明在样本数据压缩比达到85.00%的情况下,TSDS能将分类模型准确率提升3~10个百分点,同时加速模型训练,使训练SVM分类器的能耗平均降低93.76%,训练MLP分类器的能耗平均降低75.41%。可见,TSDS在大数据场景的分类任务上既能缩短训练时间和减少能耗,又能提升分类器性能,从而助力实现“双碳”目标。 展开更多
关键词 分类器 层次聚类 自适应采样 数据选择 小样本学习
在线阅读 下载PDF
一种基于数据驱动的空调负荷预测方法 被引量:1
15
作者 周孟然 周光耀 +6 位作者 胡锋 朱梓伟 张奇奇 王玲 孔伟乐 吴长臻 崔恩汉 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期128-134,共7页
空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)... 空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)方法进行特征选择,剔除重要度小的特征.然后使用白鲨优化算法(white shark optimizer,WSO)对支持向量回归(support vector regression,SVR)的正则化参数和核函数的宽度参数进行优化,最后,结合自适应提升算法(adaptive boosting,Adaboost)构建Adaboost-WSO-SVR主模型,检验其精度并与其他方法进行比较.结果表明,提出的Adaboost-WSO-SVR主模型相比于集成优化后的BP,ELM模型精度更高.可知提出的方法在负荷预测方面效果更好,为空调节能优化控制策略提供依据. 展开更多
关键词 空调负荷 负荷预测 特征选择 白鲨优化算法 自适应提升算法 支持向量回归
在线阅读 下载PDF
一种带有三重选择机制的多种群多策略差分进化算法
16
作者 宋晓宇 李敏 赵明 《计算机应用研究》 北大核心 2025年第3期795-803,共9页
针对差分进化算法(differential evolution,DE)在寻优过程中易陷入局部最优以及求解精度不高的问题,提出一种带有三重选择机制的多种群多策略差分进化算法(TSMDE)。该算法采用分层种群结构,利用适应度值将种群划分为三个子种群,且子种... 针对差分进化算法(differential evolution,DE)在寻优过程中易陷入局部最优以及求解精度不高的问题,提出一种带有三重选择机制的多种群多策略差分进化算法(TSMDE)。该算法采用分层种群结构,利用适应度值将种群划分为三个子种群,且子种群的大小随迭代动态调整。同时,采用五个改进的突变策略以及不同的参数自适应方式,以满足个体在不同进化阶段的开发与探索需求。为了充分发挥多种群的优势,提出一种高效的信息共享机制——三重选择机制。各子种群先根据不同模式选择执行突变的个体,然后该个体根据自身进化状态选择合适的突变策略,最后判断出该个体处于停滞状态后从两个外部存档中选择一个候选解进行替换,最终通过三重选择机制引导整个种群的进化进程。最后,将TSMDE与13个先进的差分进化(DE)变体进行对比,以验证TSMDE的有效性。在CEC2014测试集中的30个基准函数上的实验结果表明,该算法在求解精度、避免陷入局部最优等方面的能力优于或比得上这13个先进算法。 展开更多
关键词 差分进化 分层种群 多策略 三重选择机制 参数自适应
在线阅读 下载PDF
中国特色高职教育增强适应性的理论逻辑与价值选择
17
作者 郭文富 马树超 《职教论坛》 北大核心 2025年第10期37-44,共8页
改革开放以来,高职教育在实践中探索了具有中国特色的类型教育发展道路,开启了增强适应性新征程。“适应”理念是习近平总书记关于教育的重要论述的重要要求,是我国近现代职业教育思想的传承与弘扬,是立足高职教育改革实践经验的理论升... 改革开放以来,高职教育在实践中探索了具有中国特色的类型教育发展道路,开启了增强适应性新征程。“适应”理念是习近平总书记关于教育的重要论述的重要要求,是我国近现代职业教育思想的传承与弘扬,是立足高职教育改革实践经验的理论升华,反映了进化论在教育领域的投射,亦成为建构中国特色教育自主知识体系的组成部分。新时期增强高职教育适应性,需要牢牢把握三大属性的价值立场,强化分类发展的价值引领,实现韧性发展的价值追求。 展开更多
关键词 高职教育 适应性 理论逻辑 价值选择
在线阅读 下载PDF
无人机影像的玉米植株中心检测模型和方法
18
作者 邬开俊 白晨帅 +2 位作者 杜建军 张红娜 白晓凤 《计算机工程与应用》 北大核心 2025年第16期324-336,共13页
为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid a... 为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliencyadaptive,and centroid awareness for scenes)模型的玉米植株中心检测算法。该算法通过三重注意力模块、显著性裁剪混合数据增强方法、自适应池化技术和选择性多单元激活函数等技术手段,有效提高了检测精度和鲁棒性。采用三重注意力模块解决目标遮挡和视觉混淆问题,使模型能够更好地关注植株中心区域。采用显著性裁剪混合数据增强方法,在训练过程中引入不同的环境和光照变化,增强了模型对复杂场景的适应能力。结合自适应池化技术提高空间分辨率,有助于捕捉更精细的特征信息,提高检测的准确性。采用选择性多单元激活函数进一步增强了网络的学习能力,使模型能够更好地适应各种场景下的植株中心检测任务。实验结果表明,与现有的YOLOX算法相比,YOLO-TSCAS算法在平均准确率和平均F1值上分别提高了22.73个百分点和0.255,并且平均对数漏检率也显著降低了0.35。与其他流行的检测模型相比,在两类植株中心目标检测精度上也取得了最佳效果。 展开更多
关键词 中心检测 三重注意力模块 显著性裁剪混合 自适应池化技术 选择性多单元
在线阅读 下载PDF
联合不相关回归和潜在表示的无监督特征选择
19
作者 刘威 朱乙鑫 +2 位作者 白润才 高琪 李晓红 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第4期495-504,共10页
针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for ... 针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for unsupervised feature selection,URLUFS)。该方法将非负矩阵分解作用于广义不相关回归模型的投影矩阵,使投影矩阵实现非线性的维数约简并获得特征选择矩阵。在特征选择矩阵的基础上,引入自适应图学习来进一步挖掘数据的局部流形结构,并对特征选择矩阵施加范数约束以保持稀疏性。利用潜在表示对数据样本间的相互关系进行学习,引导回归模型中的伪标签矩阵,从而选择出更具有判别性的特征。在8个公开的数据集上进行了数值对比实验,实验结果表明:基于广义不相关回归和潜在表示学习的无监督特征选择算法明显优于其他8种无监督特征选择算法。 展开更多
关键词 无监督特征选择 广义不相关回归 非负矩阵分解 潜在表示学习 自适应图学习
在线阅读 下载PDF
触觉图像位移估计算法研究
20
作者 吴剑锋 叶翔宇 +1 位作者 张升高 仇超 《传感器与微系统》 北大核心 2025年第1期161-164,共4页
针对现有数字图像运动估计算法不能完全适用于低分辨率触觉图像的问题,提出了一种自适应参考模板互相关(ARTC)的触觉图像位移估计算法,其流程包括模板自适应选取、最相似子区搜索和亚像素位移估计。该算法自适应选取模板以实现触觉图像... 针对现有数字图像运动估计算法不能完全适用于低分辨率触觉图像的问题,提出了一种自适应参考模板互相关(ARTC)的触觉图像位移估计算法,其流程包括模板自适应选取、最相似子区搜索和亚像素位移估计。该算法自适应选取模板以实现触觉图像位移的快速、高精度估计。实验结果表明:本文提出的ARTC算法对低分辨率触觉图像进行位移估计的精度和耗时都优于相位相关算法、仿射法和尺度不变特征变换(SIFT)算法。 展开更多
关键词 低分辨率触觉图像 位移估计 互相关 自适应选取
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部