期刊文献+
共找到432篇文章
< 1 2 22 >
每页显示 20 50 100
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
1
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 fuzzy logic neural networks adaptive control Nonlinear dynamic system.
在线阅读 下载PDF
基于区间Ⅱ型FNN的MSWI过程炉膛温度控制 被引量:2
2
作者 汤健 田昊 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第2期157-172,共16页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析以确定对其产生影响的关键操作变量;然后,根据上述操作变量基于线性回归决策树(linear regression decision tree,LRDT)建立多入单出(multiple-input single-output,MISO)炉膛温度模型;最后,构建具有自适应参数学习的IT2FNN控制器,并证明其稳定性。在MSWI过程数据集上构建模型并进行控制,实验结果验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 炉膛温度控制 线性回归决策树(linear regression decision tree LRDT) 区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network IT2fnn) 梯度下降法 李雅普诺夫稳定性分析
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
3
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
基于改进递归区间2型直觉FNN的时间序列预测
4
作者 陈孝慈 谭章禄 《统计与决策》 CSSCI 北大核心 2024年第20期61-66,共6页
文章针对时间序列预测中存在的高度随机性与不确定性,提出了一种改进递归区间2型直觉模糊神经网络预测模型。首先,借助直觉评估和系统的噪声容忍度,通过区间2型直觉模糊集来增强对不确定性的建模;其次,将每个模糊推理规则激发强度反馈... 文章针对时间序列预测中存在的高度随机性与不确定性,提出了一种改进递归区间2型直觉模糊神经网络预测模型。首先,借助直觉评估和系统的噪声容忍度,通过区间2型直觉模糊集来增强对不确定性的建模;其次,将每个模糊推理规则激发强度反馈给自身来建立本地内部反馈机制,从而充分挖掘数据之间的内在信息;然后,将改进的密度聚类算法与直觉模糊集触发强度相结合来确定模糊规则,使模型能够自适应地调整结构,从而适应时间序列数据的变化趋势;最后,通过噪声混沌序列、非线性系统辨识,以及高频金融时间序列预测实验,验证了所提方法具有更高的预测精度和泛化性能。 展开更多
关键词 时间序列 直觉模糊 前馈神经网络 自适应 预测
在线阅读 下载PDF
基于模糊神经网络在线自学习的多智能体一致性控制
5
作者 张宪霞 唐胜杰 俞寅生 《自动化学报》 北大核心 2025年第3期590-603,共14页
针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,D... 针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,DFNN和神经网络(Neural network,NN)分别逼近控制策略和性能指标.每个智能体的DFNN执行者从零规则开始,通过在线学习,与其局部邻域的智能体交互而生成和合并规则.最终,每个智能体都有一个独特的DFNN控制器,具有不同的结构和参数,实现了最优的分布式同步控制律.仿真结果表明,本文提出的在线算法在非线性多智能体系统分布式一致性控制中优于传统基于NN的ADP算法. 展开更多
关键词 多智能体系统 自适应动态规划 动态模糊神经网络 分布式一致性控制 在线学习
在线阅读 下载PDF
基于模糊神经网络(FNN)的赤潮预警预测研究 被引量:17
6
作者 王洪礼 葛根 李悦雷 《海洋通报》 CAS CSCD 北大核心 2006年第4期36-41,共6页
为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好... 为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好地反演出各种理化因子与夜光藻密度的非线性对应变化规律,有更好的预测功能。 展开更多
关键词 赤潮预测 模糊神经网络(fnn) BP算法
在线阅读 下载PDF
EFNN——一种增强型模糊神经网络 被引量:3
7
作者 陈保国 朱奕 +1 位作者 张华 张家余 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第1期89-92,共4页
提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网... 提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网络具有较强的非线性逼近能力和较快的学习速度 . 展开更多
关键词 特征网络 功能网络 增强型模型神经网络 梯度算法
在线阅读 下载PDF
基于粗糙集高速公路混沌T-S FNN控制仿真 被引量:4
8
作者 庞明宝 贺国光 +1 位作者 赵新萍 东方 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期370-376,共7页
研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,... 研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,红灯时间作为输出的T-S模糊神经网络混沌控制器;采用粗糙集理论建立混沌控制器知识库,确定模糊神经网络控制器结构并提取模糊规则;采用模糊神经网络方法对控制器参数进行优化。仿真结果表明:采用该方法设计的智能混沌控制器,可实现保持高速公路有序运动、避免交通堵塞、提高交通通行能力的目的,是提高高速公路管理控制水平的有效方法。 展开更多
关键词 高速公路 混沌控制 T-S模糊神经网络 粗糙集 模糊C-均值聚类 仿真
在线阅读 下载PDF
基于Fuzzy-ART神经网络的红外弱小目标检测 被引量:5
9
作者 陈炳文 王文伟 秦前清 《系统工程与电子技术》 EI CSCD 北大核心 2012年第5期857-863,共7页
针对现有背景抑制算法未能有效抑制背景而导致目标检测率低的问题,提出了一种基于模糊自适应共振理论(fuzzy adaptive resonance theory,Fuzzy-ART)神经网络的弱小目标检测算法。首先,采用Fuzzy-ART神经网络结合Robinson警戒环技术,建... 针对现有背景抑制算法未能有效抑制背景而导致目标检测率低的问题,提出了一种基于模糊自适应共振理论(fuzzy adaptive resonance theory,Fuzzy-ART)神经网络的弱小目标检测算法。首先,采用Fuzzy-ART神经网络结合Robinson警戒环技术,建立自适应局部空间背景模型,并以此分析像素点的背景模糊隶属度来抑制背景杂波;然后依据目标与残留背景杂波的空间特征采用模板均差法来突显目标,并提出基于行列模糊聚类的自适应分割算法来提取候选目标;最后结合目标的运动连续性进行多帧轨迹关联从而检测出真实目标。理论分析与实验结果表明,该算法能随背景的局部情况来自适应调节空间背景模型,从而自适应抑制背景杂波、突显目标,能有效提高信噪比,检测出弱小目标。 展开更多
关键词 模式识别 弱小目标检测 模糊自适应共振理论神经网络 Robinson警戒环 自适应分割
在线阅读 下载PDF
高斯激活函数特征值分解修剪技术的D-FNN算法研究 被引量:3
10
作者 何正风 张德丰 孙亚民 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期34-39,共6页
提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获... 提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获得更为紧凑的D-FNN结构,避免了过拟合现象。最后通过对Her-mite多项式逼近能力来验证所提方案的有效性。仿真结果表明使用特征值分解修剪技术和高斯激活函数的D-FNN具有良好的性能。 展开更多
关键词 动态模糊神经网络 模糊规则 修剪技术 特征值分解
在线阅读 下载PDF
基于FNN的覆冰机器人越障机械臂轨迹跟踪控制 被引量:2
11
作者 郝晓弘 刘晓鹏 +1 位作者 岳和平 张帆 《计算机工程与应用》 CSCD 北大核心 2010年第8期232-233,237,共3页
覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具... 覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具有很好的效果,表明控制策略和理论分析的可行性。 展开更多
关键词 输电线路 覆冰机器人 模糊神经网络 自适应性
在线阅读 下载PDF
基于QPSO-FNN的混沌时间序列预测 被引量:3
12
作者 潘玉民 邓永红 张全柱 《计算机应用与软件》 CSCD 北大核心 2013年第8期91-94,98,共5页
提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-m... 提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-ma模糊神经网络以高斯基函数作为模糊子集的隶属度函数,在线动态调整隶属度函数和结论参数,并采用量子粒子群算法(QPSO)优化网络初始参数,提高预测准确度。该模型具有物理意义清晰、预测精度高以及预测结果确定等优点,仿真实验结果证明了该方法的有效性。 展开更多
关键词 混沌时间序列 太阳黑子 混合pi-sigma 模糊神经网络 QPSO-fnn 预测
在线阅读 下载PDF
基于GD-FNN的金融股指预测模型 被引量:5
13
作者 孙彬 李铁克 张文学 《计算机应用研究》 CSCD 北大核心 2010年第9期3272-3275,3278,共5页
针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预... 针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预测指标体系。通过滑动时间窗对数据集进行处理,提高了模型预测准确性并降低了运算时间。与其他神经网络模型预测效果进行比较,结果表明提出的模型具有较好的预测效果。 展开更多
关键词 广义动态模糊神经网络 金融股指预测 预测指标体系 动态模糊规则抽取 滑动时间窗 金融非线性系统辨识
在线阅读 下载PDF
基于FNN解耦纸张定量水分控制策略的研究与应用 被引量:4
14
作者 胡亚南 马文明 王孟效 《中国造纸》 CAS 北大核心 2017年第7期48-53,共6页
针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制... 针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制规则及解耦补偿参数,成功地将纸张抄造过程的多变量系统转变为单变量系统,实现纸张定量、水分之间的解耦。仿真结果表明,采用FNN解耦控制器具有较好的动态响应和较强的鲁棒性。将该策略应用于国内某造纸厂的纸板机控制系统,纸张定量控制精度为±3.9 g/m^2左右,水分控制精度为±1.0%左右,满足该纸机定量水分高精度控制要求。 展开更多
关键词 定量 水分 模糊控制 神经网络 fnn
在线阅读 下载PDF
基于规则产生准则与修剪策略的D-FNN算法研究 被引量:2
15
作者 左军 周灵 李晓东 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期43-48,共6页
提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与... 提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与相关算法作比较,从而发现了D-FNN的独特思想。编写了D-FNN的仿真程序,对具体案例进行了仿真。结果表明,D-FNN具有紧凑的结构和优秀的性能。 展开更多
关键词 动态模糊神经网络 径向基函数 模糊规则 修剪策略
在线阅读 下载PDF
FUZZY ARTMAP神经网络综述 被引量:5
16
作者 钟金宏 杨善林 《计算机科学》 CSCD 北大核心 2001年第5期89-92,共4页
1.引言 神经网络模拟人脑神经功能,用大量简单关系连接来表示复杂的函数关系,具有很多特殊优点,已在系统建模、模式识别、图像处理、知识发现和控制等领域得到了广泛的应用.但当使用前向神经网络,如多层感知器(MLP)和径向基函数(RBF)网... 1.引言 神经网络模拟人脑神经功能,用大量简单关系连接来表示复杂的函数关系,具有很多特殊优点,已在系统建模、模式识别、图像处理、知识发现和控制等领域得到了广泛的应用.但当使用前向神经网络,如多层感知器(MLP)和径向基函数(RBF)网络时,需要依赖一些试探法去选择最优的网络尺寸和参数[1],此外这些网络在学习后通常是静止的,不具备增量学习能力(在线学习),对新模式学习时,会破坏网络已记忆的模式[2,3]. 展开更多
关键词 神经网络 多层感知器 径向基函数网络 模糊集 隶属函数
在线阅读 下载PDF
基于机器学习的雅砻江流域洪水预报研究
17
作者 何彦锋 许涵冰 +3 位作者 刘洁 周研来 陈华 郭生练 《水电能源科学》 北大核心 2025年第5期15-20,共6页
雅砻江干流水力资源丰富,流域内已形成梯级水库格局,开展流域梯级水库洪水预报对实现精细化水库调度、洪水资源高效利用具有重要意义。采用自适应模糊推理系统(ANFIS)、长短期记忆神经网络(LSTM)和时域卷积网络(TCN)建立洪水预报模型。... 雅砻江干流水力资源丰富,流域内已形成梯级水库格局,开展流域梯级水库洪水预报对实现精细化水库调度、洪水资源高效利用具有重要意义。采用自适应模糊推理系统(ANFIS)、长短期记忆神经网络(LSTM)和时域卷积网络(TCN)建立洪水预报模型。研究结果表明,相较ANFIS,TCN的纳什效率系数改善率最高为17.47%(二滩,t+12),LSTM的纳什效率系数改善率最高为15.44%(桐子林,t+12)。TCN和LSTM对两河口水库入库洪水预报整体上能达到甲等精度。与ANFIS和LSTM相比,TCN在洪峰误差和峰现时差方面表现最优,有效克服了时滞和误差累计的影响,显著降低了系统误差。结果表明,构建的TCN模型能够提高洪水预报准确性和可靠性。 展开更多
关键词 雅砻江流域 洪水预报 自适应模糊推理系统 长短期记忆神经网络 时域卷积网络
在线阅读 下载PDF
基于FTA和FNN的液压系统故障诊断方法研究 被引量:3
18
作者 游张平 叶晓平 +1 位作者 朱银法 胡笑奇 《机械科学与技术》 CSCD 北大核心 2013年第12期1855-1858,共4页
针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家... 针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家经验知识,建立模糊神经网络诊断模型及并提取训练数据,在此基础上,运用统计参数法确定模糊预处理所需的模糊隶属函数。将训练好的网络模型应用于实例诊断,实验结果验证了该方法的实用性和有效性。 展开更多
关键词 液压系统 故障诊断 故障树分析 神经网络
在线阅读 下载PDF
基于D-FNN的开关磁阻无位置传感器的研究 被引量:2
19
作者 吴江潦 易灵芝 +1 位作者 邓文浪 刘香 《传感器与微系统》 CSCD 北大核心 2011年第1期66-69,89,共5页
提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角... 提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角度的非线性映射关系;训练完成后,用D-FNN输出结果取代位置传感器角度信号,实现电机无位置传感器运行。仿真和实验结果表明:由D-FNN获得的角度信号和由位置传感器获得的角度信号相比误差小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。 展开更多
关键词 开关磁阻电机 动态模糊神经网络 无位置传感器 转子位置检测
在线阅读 下载PDF
FNN上的反向传播学习算法 被引量:2
20
作者 毛国君 宋广军 杨名生 《计算机应用与软件》 CSCD 1998年第4期34-38,共5页
近几年来,模糊神经网络(FNN)的研究引起了广泛的注意。本文对FNN上的反向传播学习方法加以讨论。使用输入均值和输出权重参量来进行模糊化和反模糊化处理,学习的目的是调整这两个参量到合适的值。
关键词 模糊神经网络 反向传播学习 算法
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部