The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in...The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times.展开更多
A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for s...A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for solying the problem is developed . Numerical calculations are performed to confirm the reliability and effectiveness of the method.展开更多
An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the bucklin...An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs.展开更多
A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
对m(>1)次单元,基于单元能量投影(element energy projection,简称EEP)法提出的简约格式位移解u∗具有比常规有限元解uh至少高一阶的精度,据此提出了EEP单元概念,并给出以EEP单元作为最终解的自适应有限元求解策略.通过编制相应的计...对m(>1)次单元,基于单元能量投影(element energy projection,简称EEP)法提出的简约格式位移解u∗具有比常规有限元解uh至少高一阶的精度,据此提出了EEP单元概念,并给出以EEP单元作为最终解的自适应有限元求解策略.通过编制相应的计算程序分析了一维非自伴随问题,计算结果与理论预期吻合较好,验证了自适应求解策略的有效性和可靠性.研究结果表明:该法可以给出按最大模度量、逐点满足误差限的解答,相较于常规单元,最终的求解单元数更少.展开更多
Aimed at the difficulties in analyzing the buffer characteristics of airbag system by using thermodynamic or experimental method only,the finite element method was used to establish nonlinear models for heavy equipmen...Aimed at the difficulties in analyzing the buffer characteristics of airbag system by using thermodynamic or experimental method only,the finite element method was used to establish nonlinear models for heavy equipment and its airbag system.The models' efficiency and correctness were validated by using on-site experiment data in vehicle airdrop landing.The simulation results agree very well with the experiment results.Then,the environment adaptability of airbag system of heavy equipment under high-altitude condition was studied by using the models.Finally,some solutions were given to solve the overturn problem in the landing.展开更多
We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities...We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffu- sion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.展开更多
基金supported by the National Natural Science Foundation of China(No.11975097)the Fundamental Research Funds for the Central Universities(No.2019MS038).
文摘The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times.
文摘A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for solying the problem is developed . Numerical calculations are performed to confirm the reliability and effectiveness of the method.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs.
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
文摘对m(>1)次单元,基于单元能量投影(element energy projection,简称EEP)法提出的简约格式位移解u∗具有比常规有限元解uh至少高一阶的精度,据此提出了EEP单元概念,并给出以EEP单元作为最终解的自适应有限元求解策略.通过编制相应的计算程序分析了一维非自伴随问题,计算结果与理论预期吻合较好,验证了自适应求解策略的有效性和可靠性.研究结果表明:该法可以给出按最大模度量、逐点满足误差限的解答,相较于常规单元,最终的求解单元数更少.
文摘Aimed at the difficulties in analyzing the buffer characteristics of airbag system by using thermodynamic or experimental method only,the finite element method was used to establish nonlinear models for heavy equipment and its airbag system.The models' efficiency and correctness were validated by using on-site experiment data in vehicle airdrop landing.The simulation results agree very well with the experiment results.Then,the environment adaptability of airbag system of heavy equipment under high-altitude condition was studied by using the models.Finally,some solutions were given to solve the overturn problem in the landing.
基金the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344LBNL under DE-AC0205CH11231 was supported by the Director,Office ofScience of the U.S.Department of Energy and the Petascale Initiative in Computational Science and Engineeringthe National Energy Research Scientific Computing Center,supported by the Office of Science,U.S.Department of Energy under Contract No.DE-AC02-05CH11231.
文摘We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffu- sion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.