期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
A tracking algorithm based on adaptive Kalman filter with carrier-to-noise ratio estimation under solar radio bursts interference
1
作者 ZHU Xuefen LI Ang +2 位作者 LUO Yimei LIN Mengying TU Gangyi 《Journal of Systems Engineering and Electronics》 2025年第4期880-891,共12页
Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers... Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance. 展开更多
关键词 solar radio burst(SRB) global positioning system(GPS) adaptive Kalman filter(AKF) tracking algorithm.
在线阅读 下载PDF
IAE-adaptive Kalman filter for INS/GPS integrated navigation system 被引量:15
2
作者 Bian Hongwei Jin Zhihua Tian Weifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期502-508,共7页
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal... A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter. 展开更多
关键词 inertial navigation system global positioning system integrated navigation system adaptive Kalman filter
在线阅读 下载PDF
Robust adaptive UKF based on SVR for inertial based integrated navigation 被引量:8
3
作者 Meng-de Zhang Hai-fa Dai +1 位作者 Bai-qing Hu Qi Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期846-855,共10页
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr... Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers. 展开更多
关键词 Integrated navigation Support vector regression Unscented Kalman filter Robust filter adaptive filter
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
4
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm 被引量:10
5
作者 刘开周 李静 +2 位作者 郭威 祝普强 王晓辉 《Journal of Central South University》 SCIE EI CAS 2014年第2期550-557,共8页
Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innov... Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance. 展开更多
关键词 human occupied vehicle NAVIGATION extended Kalman filter unscented Kalman filter adaptive unscented Kalman filter
在线阅读 下载PDF
Amplitude phase control for electro-hydraulic servo system based on normalized least-mean-square adaptive filtering algorithm 被引量:4
6
作者 姚建均 富威 +1 位作者 胡胜海 韩俊伟 《Journal of Central South University》 SCIE EI CAS 2011年第3期755-759,共5页
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit... The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision. 展开更多
关键词 amplitude attenuation phase delay normalized least-mean-square adaptive filtering algorithm tracking performance electro- hydraulic servo system
在线阅读 下载PDF
Lattice structure adaptive IIR notch filter based on least square kurtosis 被引量:8
7
作者 Liang Hong Hong Kang Yang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1188-1192,共5页
A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. U... A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms. 展开更多
关键词 adaptive IIR notch filter least square kurtosis variable step-size colored Gaussian noise.
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:3
8
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
A robust subband adaptive filter algorithm for sparse and block-sparse systems identification 被引量:2
9
作者 ZAHRA Habibi HADI Zayyani MOHAMMAD Shams Esfand Abadi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期487-497,共11页
This paper presents a new subband adaptive filter(SAF)algorithm for system identification scenario under impulsive interference,named generalized continuous mixed p-norm SAF(GCMPN-SAF)algorithm.The proposed algorithm ... This paper presents a new subband adaptive filter(SAF)algorithm for system identification scenario under impulsive interference,named generalized continuous mixed p-norm SAF(GCMPN-SAF)algorithm.The proposed algorithm uses a GCMPN cost function to combat the impul-sive interference.To further accelerate the convergence rate in the sparse and the block-sparse system identification processes,the proportionate versions of the proposed algorithm,the L0-norm GCMPN-SAF(L0-GCMPN-SAF)and the block-sparse GCMPN-SAF(BSGCMPN-SAF)algorithms are also developed.Moreover,the convergence analysis of the proposed algorithm is provided.Simulation results show that the proposed algorithms have a better performance than some other state-of-the-art algorithms in the literature with respect to the convergence rate and the tracking capability. 展开更多
关键词 subband adaptive filter(SAF) generalized continuous mixed p-norm(GCMPN) sparse system block-sparse system impulsive interference
在线阅读 下载PDF
Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method 被引量:10
10
作者 杨海 李威 罗成名 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1324-1333,共10页
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil... Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods. 展开更多
关键词 inertial navigation system(INS) wireless sensor network(WSN) mobile target integrated positioning fuzzy adaptive Kalman filter
在线阅读 下载PDF
Scheme of adaptive polarization filtering based on Kalman model 被引量:1
11
作者 Song Lizhong Qi Haiming Qiao Xiaolin Meng Xiande 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期13-18,共6页
A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamical... A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering. 展开更多
关键词 guidance radar POLARIZATION adaptive filter Kalman filtering interference suppression.
在线阅读 下载PDF
Unsupervised robust adaptive filtering against impulsive noise 被引量:1
12
作者 Tao Ma Jie Chen +1 位作者 Wenjie Chen Zhihong Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期32-39,共8页
An implementation of adaptive filtering,composed of an unsupervised adaptive filter(UAF),a multi-step forward linear predictor(FLP),and an unsupervised multi-step adaptive predictor(UMAP),is built for suppressing impu... An implementation of adaptive filtering,composed of an unsupervised adaptive filter(UAF),a multi-step forward linear predictor(FLP),and an unsupervised multi-step adaptive predictor(UMAP),is built for suppressing impulsive noise in unknown circumstances.This filtering scheme,called unsupervised robust adaptive filter(URAF),possesses a switching structure,which ensures the robustness against impulsive noise.The FLP is used to detect the possible impulsive noise added to the signal,if the signal is"impulse-free",the filter UAF can estimate the clean sig-nal.If there exists impulsive noise,the impulse corrupted samples are replaced by predicted ones from the FLP,and then the UMAP estimates the clean signal.Both the simulation and experimental results show that the URAF has a better rate of convergence than the most recent universal filter,and is effective to restrict large disturbance like impulsive noise when the universal filter fails. 展开更多
关键词 adaptive filtering unsupervised form impulse insen-sitive switching structure.
在线阅读 下载PDF
Adaptive template filter method for image processing based on immune genetic algorithm 被引量:1
13
作者 谭冠政 吴建华 +1 位作者 范必双 江斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期1028-1035,共8页
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona... To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments. 展开更多
关键词 image characteristic template match adaptive template filter wavelet transform elitist selection elitist crossover immune genetic algorithm
在线阅读 下载PDF
Adaptive detection in the presence of signal mismatch 被引量:1
14
作者 Weijian Liu Wenchong Xie +3 位作者 Rongfeng Li Fei Gao Xiaoqin Hu Yongliang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期38-43,共6页
The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can c... The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors. 展开更多
关键词 mismatched signal detection adaptive coherence estimator(ACE) adaptive matched filter(AMF) generalized likelihood ratio test(GLRT) tunable detector
在线阅读 下载PDF
Adaptive IIR filtering based on balanced-realization
15
作者 Yongfeng Zhi Panguo Fan Jun Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期19-25,共7页
Due to low parameter sensitivity for balanced realiza- tions, balanced structure becomes a good candidate for an statespace adaptive infinite impluse response (IIR) filter. Here, using coefficients of the transfer f... Due to low parameter sensitivity for balanced realiza- tions, balanced structure becomes a good candidate for an statespace adaptive infinite impluse response (IIR) filter. Here, using coefficients of the transfer function as the adaptive filtering parameters, a balanced adaptive IIR filtering algorithm is proposed for output-error minimization. The algorithm in the internally balanced realization guarantees that the adaptive IIR filter always minimizes the ratio of maximum-to-minimum eigenvalue of the Grammian matrices at the each iteration. Simulation results are provided to corroborate the proposed algorithm. 展开更多
关键词 balanced realization adaptive infinite impluse response filtering state-space transformation.
在线阅读 下载PDF
Research on the navigation method of high speed differential rotation guided ammunition with ballistic assistance prediction under GNSS denial
16
作者 Ning Liu Kejun Hu +5 位作者 Bin Hu Haorui Li Kai Shen Wenhao Qi Junfang Fan Zhong Su 《Defence Technology(防务技术)》 2025年第7期275-289,共15页
In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differ... In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss. 展开更多
关键词 GNSS refusal Ballistic assistance Guided ammunition adaptive kalman filter Covariance of innovation sequence
在线阅读 下载PDF
Research on Anti-noise Processing Method of Production Signal Based on Ensemble Empirical Mode Decomposition(EEMD) 被引量:2
17
作者 Fang Jun-long Yu Xiao-juan +3 位作者 Wang Rui-fa Wang Run-tao Li Peng-fei Shao Chang-hui 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第4期69-79,共11页
The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and ... The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction. 展开更多
关键词 production signal signal denoising processing adaptive EEMD threshold filtering algorithm prediction accuracy
在线阅读 下载PDF
Parameterized time-frequency analysis to separate multi-radar signals 被引量:1
18
作者 Wenlong Lu Junwei Xie +1 位作者 Heming Wang Chuan Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期493-502,共10页
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ... Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation. 展开更多
关键词 intercepted multi-radar signal parameterized time-frequency analysis DEMODULATION adaptive filtering
在线阅读 下载PDF
Bandwidth adaption for kernel particle filter 被引量:1
19
作者 Fu Li Guangming Shi Fei Qi Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期340-346,共7页
A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to... A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision. 展开更多
关键词 kernel density estimation adaptive bandwidth kernel particle filter.
在线阅读 下载PDF
SMC-PHD based multi-target track-before-detect with nonstandard point observations model 被引量:5
20
作者 占荣辉 高彦钊 +1 位作者 胡杰民 张军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期232-240,共9页
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ... Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data. 展开更多
关键词 adaptive particle sampling multi-target track-before-detect probability hypothesis density(PHD) filter sequential Monte Carlo(SMC) method
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部