期刊文献+
共找到191篇文章
< 1 2 10 >
每页显示 20 50 100
ADAPTIVE PINNING SYNCHRONIZATION OF COUPLED NEURAL NETWORKS WITH MIXED DELAYS AND VECTOR-FORM STOCHASTIC PERTURBATIONS 被引量:4
1
作者 杨鑫松 曹进德 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期955-977,共23页
In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also... In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results. 展开更多
关键词 coupled neural networks mixed delays SYNCHRONIZATION vector-form noises PINNING adaptive asymmetric coupling
在线阅读 下载PDF
Anti-noise performance of the pulse coupled neural network applied in discrimination of neutron and gamma-ray 被引量:3
2
作者 Hao-Ran Liu Zhuo Zuo +3 位作者 Peng Li Bing-Qi Liu Lan Chang Yu-Cheng Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期89-101,共13页
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r... In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range. 展开更多
关键词 pulse coupled neural network Zero crossing Frequency gradient analysis Vector projection Charge comparison Neutron and gamma-ray discrimination pulse shape discrimination
在线阅读 下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
3
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE FUSION dual BAND pulse coupled neural network(PCNN) FEATURE extraction
在线阅读 下载PDF
Adaptive synchronization in an array of asymmetric coupled neural networks 被引量:1
4
作者 高明 崔宝同 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期76-83,共8页
This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated l... This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results. 展开更多
关键词 coupled neural networks adaptive synchronization Lyapunov functional delayed coupling
在线阅读 下载PDF
基于神经网络自适应滤波器的中医脉象信号处理技术
5
作者 刘梦聪 冯波 《现代信息科技》 2025年第7期83-86,92,共5页
中医脉象是传统中医诊断的重要部分,蕴含丰富临床信息。鉴于脉象信号具有随机性与复杂非平稳性,提出一种基于神经网络自适应滤波的中医脉象信号处理新技术。传统信号处理方法常难以有效对信号去噪和分类,制约了脉象的精准分析。自适应... 中医脉象是传统中医诊断的重要部分,蕴含丰富临床信息。鉴于脉象信号具有随机性与复杂非平稳性,提出一种基于神经网络自适应滤波的中医脉象信号处理新技术。传统信号处理方法常难以有效对信号去噪和分类,制约了脉象的精准分析。自适应滤波器能融合神经网络优势,实时调整滤波参数,适配脉象信号的动态变化。文章分析了该技术在脉象信号去噪、特征提取及分类中的应用,其可提升信号处理的精度与效率,为中医诊断提供更可靠支撑,助力推动中医现代化进程。 展开更多
关键词 神经网络 自适应滤波器 中医脉象 信号处理 去噪
在线阅读 下载PDF
脉冲耦合神经网络下多视角激光图像点云配准
6
作者 李玮琳 曾琪峰 李颖 《激光杂志》 北大核心 2024年第12期125-130,共6页
多视角配准能够保持场景中物体的几何一致性,但是存在大量遮挡情况,不同视角下的可见性和完整性受限。对此,提出一种脉冲耦合神经网络下多视角激光图像点云配准方法。通过对多视角激光图像的像素噪声响应和灰度分布特性进行分析,得出脉... 多视角配准能够保持场景中物体的几何一致性,但是存在大量遮挡情况,不同视角下的可见性和完整性受限。对此,提出一种脉冲耦合神经网络下多视角激光图像点云配准方法。通过对多视角激光图像的像素噪声响应和灰度分布特性进行分析,得出脉冲耦合神经网络中各个神经元的关键参数,从而确定与神经元对应的动态阈值,实现激光图像多视角分割。分别计算多视角激光图像点云中各个点的三维特征描述子,进行最近邻关系匹配,组建点云关系集合,通过三元组约束优化关系集合识别错误关系点,以关系集中匹配点对之间的误差平方和组建目标函数,通过优化目标函数确定最佳多视角激光图像点云配准方案。实验结果表明,所提方法应用后,区域内部均匀性、区域对比度和最大香农熵较大,点云重叠以及虚假匹配关系较少,降低了Q值。可以有效提升多视角激光图像点云配准结果的精准度。 展开更多
关键词 脉冲耦合神经网络 多视角 激光图像 点云配准
在线阅读 下载PDF
基于快速联合双边滤波器和改进PCNN的红外与可见光图像融合
7
作者 杨艳春 雷慧云 杨万轩 《红外技术》 CSCD 北大核心 2024年第8期892-901,共10页
针对红外与可见光图像融合结果中细节丢失、目标不显著和对比度低等问题,提出了一种结合快速联合双边滤波器(fast joint bilateral filter,FJBF)和改进脉冲耦合神经网络(pulse coupled neural network,PCNN)的红外与可见光图像融合方法... 针对红外与可见光图像融合结果中细节丢失、目标不显著和对比度低等问题,提出了一种结合快速联合双边滤波器(fast joint bilateral filter,FJBF)和改进脉冲耦合神经网络(pulse coupled neural network,PCNN)的红外与可见光图像融合方法,在保证融合图像质量的前提下有效提高运行效率。首先,利用快速联合双边滤波器对源图像进行分解;其次,为了更好地提取图像中显著结构和目标信息,针对基础层图像采用一种基于视觉显著图(visual significance map,VSM)的加权平均融合规则,针对细节层图像采用改进脉冲耦合神经网络模型进行融合,其中PCNN的所有参数都可以根据输入波段自适应调节;最后,将基础层融合图与细节层融合图叠加重构得到融合图像。实验结果表明,该方法提高了融合图像的效果,有效地保留了目标、背景细节和边缘等重要信息。 展开更多
关键词 图像处理 快速联合双边滤波器 脉冲耦合神经网络 红外与可见光图像 图像融合
在线阅读 下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
8
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子群优化算法
在线阅读 下载PDF
基于全局能量特征与改进PCNN的红外与可见光图像融合
9
作者 邢延超 牛振华 《红外技术》 CSCD 北大核心 2024年第8期902-911,共10页
为了改善红外与可见光融合图像存在不清晰、图像对比度低以及缺少纹理细节的问题,本文提出了一种基于参数自适应脉冲耦合神经网络(parameter-adaptive pulse-coupled neural network,PAPCNN)图像融合算法。首先,对源红外图像进行暗通道... 为了改善红外与可见光融合图像存在不清晰、图像对比度低以及缺少纹理细节的问题,本文提出了一种基于参数自适应脉冲耦合神经网络(parameter-adaptive pulse-coupled neural network,PAPCNN)图像融合算法。首先,对源红外图像进行暗通道去雾,增强图像的清晰度;然后,使用非下采样剪切波变换(non-subsampled shearlet transform,NSST)分解源图像,使用全局能量特征结合改进的空间频率自适应权重融合低频系数,将纹理能量作为PA-PCNN外部输入融合高频系数;最后,通过逆NSST变换得到最终融合灰度图像。本文方法与7种经典算法在2组图像中进行对比实验,实验结果表明:本文方法在评价指标中明显优于对比算法,提高了融合图像的清晰度和细节信息,验证了本文方法的有效性。将灰度图像转为伪彩色图像进一步增强了融合图像的辨识度和人眼的感知效果。 展开更多
关键词 图像融合 非下采样剪切波变换 全局能量特征 纹理能量 脉冲耦合神经网络
在线阅读 下载PDF
基于遗传蚁群优化的PCNN改进中值滤波图像去噪方法
10
作者 朱雪梅 《科技创新与应用》 2024年第20期1-7,共7页
为实现数字图像自适应去噪,提出一种基于遗传蚁群算法(GACA)优化的脉冲耦合神经网络(PCNN)改进中值滤波混合图像去噪方法(GACA-PCNN-MF)。通过将遗传算法(GA)和蚁群算法(ACO)相结合使GA的计算结果用于增强ACO早期信息素,最终使ACO在正... 为实现数字图像自适应去噪,提出一种基于遗传蚁群算法(GACA)优化的脉冲耦合神经网络(PCNN)改进中值滤波混合图像去噪方法(GACA-PCNN-MF)。通过将遗传算法(GA)和蚁群算法(ACO)相结合使GA的计算结果用于增强ACO早期信息素,最终使ACO在正反馈机制中加速优化PCNN关键参数,然后使用优化后的PCNN改进中值滤波技术进行图像去噪处理。通过实验分析和定量计算与现有其他图像去噪技术对比,结果表明,提出的GACA-MF改进混合图像去噪方法的效果优于分别使用中值滤波算法和PCNN算法。可见,利用自适应的方式优化网络参数可以尽可能发掘PCNN的最大潜能。 展开更多
关键词 图像去噪 遗传蚁群算法 脉冲耦合神经网络 中值滤波 优化参数
在线阅读 下载PDF
一种GF-2全色多光谱影像融合方法
11
作者 王筱宇 杨军 《现代信息科技》 2024年第20期107-110,116,共5页
高分2号卫星影像的应用日益多样化,如何获取高质量融合影像成为需要研究的重要问题。为了从原始的全色影像和多光谱影像中获取高空间分辨率和高光谱分辨率的影像,结合方向信息和脉冲耦合神经网络对非下采样轮廓波变换算法进行改进。以... 高分2号卫星影像的应用日益多样化,如何获取高质量融合影像成为需要研究的重要问题。为了从原始的全色影像和多光谱影像中获取高空间分辨率和高光谱分辨率的影像,结合方向信息和脉冲耦合神经网络对非下采样轮廓波变换算法进行改进。以甘肃省兰州市的GF-2全色影像和多光谱影像作为数据源,提出了一种结合PCNN和NSCT的遥感影像融合方法,通过定性评估和定量评估,与IHS方法、BT方法、PCA方法和GS方法相比,改进后的方法在改善空间细节和保留光谱信息方面具有更好的效果。 展开更多
关键词 高分2号影像 遥感影像融合 脉冲耦合神经网络 非下采样轮廓波变换 方向信息
在线阅读 下载PDF
一种基于脉冲耦合神经网络和图像熵的自动图像分割方法 被引量:146
12
作者 马义德 戴若兰 李廉 《通信学报》 EI CSCD 北大核心 2002年第1期46-51,共6页
90年代发展形成的脉冲耦合神经网络(PCNN)模型特别适合于图像分割、边缘提取等方面的应用研究,但众所周知,PCNN模型图像分割效果不但取决于PCNN模型中各个参数的合理选择,而且同时还取决于循环迭代次数的确定选择准则,通常循环迭代次数... 90年代发展形成的脉冲耦合神经网络(PCNN)模型特别适合于图像分割、边缘提取等方面的应用研究,但众所周知,PCNN模型图像分割效果不但取决于PCNN模型中各个参数的合理选择,而且同时还取决于循环迭代次数的确定选择准则,通常循环迭代次数N的选择通过人工交互方式来确定。正因如此选择合适的准则来确定N是PCNN图像分割的关键,但目前还没有文献提出一个合适的准则来解决这个问题。本文结合图像统计特性和PCNN参数模型提出了熵值最大准则。该准则实现了PCNN神经网络的自动图像分割。对于PCNN的理论研究和实际应用具有非常重要的现实意义。 展开更多
关键词 脉冲耦合神经网络 图像分割 图像熵 统计特性
在线阅读 下载PDF
脉冲耦合神经网络在图像处理中的参数确定 被引量:20
13
作者 于江波 陈后金 +1 位作者 王巍 李居朋 《电子学报》 EI CAS CSCD 北大核心 2008年第1期81-85,共5页
脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出... 脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出了PCNN模型应用于图像处理中各参数确定的准则.在将其应用于眼底图像处理中,取得与人工参数选取相似的效果,表现出较好的鲁棒性. 展开更多
关键词 脉冲耦合神经网络 参数确定 计算机仿真 图像处理
在线阅读 下载PDF
一种基于简化PCNN的自适应图像分割方法 被引量:58
14
作者 毕英伟 邱天爽 《电子学报》 EI CAS CSCD 北大核心 2005年第4期647-650,共4页
近年来的研究表明,脉冲耦合神经网络(PulseCoupledNeuralNetwork ,PCNN)可有效地用于图像分割.然而对于不同图像,常需要选取适当的网络参数,以得到有效的分割结果.但是,目前网络参数的选取还主要停留在人工调整和确定阶段,尚无一种能够... 近年来的研究表明,脉冲耦合神经网络(PulseCoupledNeuralNetwork ,PCNN)可有效地用于图像分割.然而对于不同图像,常需要选取适当的网络参数,以得到有效的分割结果.但是,目前网络参数的选取还主要停留在人工调整和确定阶段,尚无一种能够根据图像本身特性自动确定参数的方法,这在很大程度上限制了PCNN的应用.针对这一问题,本文提出了一种基于简化PCNN的自适应图像分割方法,通过利用图像本身空间和灰度特性自动确定网络参数,实现对不同图像的分割.实验结果表明,本文算法可以有效地对不同图像进行自动分割,具有一定的健壮性. 展开更多
关键词 脉冲耦合神经网络(PCNN) 自适应 参数确定 图像自动分割
在线阅读 下载PDF
基于NSCT和PCNN的红外与可见光图像融合方法 被引量:48
15
作者 李美丽 李言俊 +1 位作者 王红梅 张科 《光电工程》 CAS CSCD 北大核心 2010年第6期90-95,共6页
提出了一种基于非采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的红外与可见光图像融合方法。首先用NSCT对已配准的源图像进行分解,得到低频子带系数和各带通子带系数;其次对低频子带系数采取一种基于边缘的方法以得到融合图像的... 提出了一种基于非采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的红外与可见光图像融合方法。首先用NSCT对已配准的源图像进行分解,得到低频子带系数和各带通子带系数;其次对低频子带系数采取一种基于边缘的方法以得到融合图像的低频子带系数;对各带通子带系数提出了一种改进的基于PCNN的图像融合方法来确定融合图像的各带通子带系数;最后经过NSCT逆变换得到融合图像。实验结果表明,本文方法优于Laplacian方法、小波方法和传统的NSCT方法。 展开更多
关键词 图像融合 非采样CONTOURLET变换 脉冲耦合神经网络 链接强度
在线阅读 下载PDF
NSCT域内基于改进PCNN和区域能量的多光谱和全色图像融合方法 被引量:22
16
作者 李新娥 任建岳 +3 位作者 吕增明 沙巍 张立国 何斌 《红外与激光工程》 EI CSCD 北大核心 2013年第11期3096-3102,共7页
针对多光谱和全色图像的融合,提出了一种NSCT域内基于改进脉冲耦合神经网络(PCNN)和区域能量的融合方法。首先,利用NSCT将图像分解为一个低频子带和多个不同方向的带通子带。然后,对分解后的低频子带采用基于区域能量的自适应加权算法... 针对多光谱和全色图像的融合,提出了一种NSCT域内基于改进脉冲耦合神经网络(PCNN)和区域能量的融合方法。首先,利用NSCT将图像分解为一个低频子带和多个不同方向的带通子带。然后,对分解后的低频子带采用基于区域能量的自适应加权算法进行融合;在带通方向子带,结合改进的脉冲耦合神经网络,使用带通方向子带系数作为PCNN的外部输入激励,经过PCNN点火获得待融合图像的点火映射图,根据点火时间计算点火映射图的区域能量,通过判决算子选择待融合图像的带通方向子带系数作为融合系数。最后,对融合处理后的NSCT变换系数进行重构生成融合图像。实验结果显示:在迭代次数为100次时,与改进小波算法相比,标准差提高了9.48%,熵提高了0.95%,相关系数提高了21.56%,偏差指数降低了29.66%;与Contourlet算法相比,标准差提高了9.73%,熵提高了0.94%,相关系数提高了11.27%,偏差指数降低了9.45%;与NSCT算法相比,标准差提高了3.84%,熵提高了3.34%,相关系数提高了7.89%,偏差指数降低了7.42%。 展开更多
关键词 图像融合 非下采样CONTOURLET变换 脉冲耦合神经网络 区域能量
在线阅读 下载PDF
基于NSST和自适应PCNN的图像融合算法 被引量:37
17
作者 江平 张强 +1 位作者 李静 张锦 《激光与红外》 CAS CSCD 北大核心 2014年第1期108-113,共6页
针对红外和可见光图像的特点,本文提出了一种基于非下采样剪切波变换(NSST)和自适应的脉冲耦合神经网络(PCNN)相结合的红外与可见光图像融合的新算法。对经过NSST变换后的低频子带系数采用带高斯权重分布矩阵的局域方差和方差匹配度相... 针对红外和可见光图像的特点,本文提出了一种基于非下采样剪切波变换(NSST)和自适应的脉冲耦合神经网络(PCNN)相结合的红外与可见光图像融合的新算法。对经过NSST变换后的低频子带系数采用带高斯权重分布矩阵的局域方差和方差匹配度相结合的融合规则,对高频子带系数采用一种改进的空间频率作为PCNN输入,且采用改进的拉普拉斯能量和作为PCNN的链接强度,利用PCNN全局耦合性和脉冲同步性选择高频子带系数,最后经NSST逆变换后得到融合结果。实验结果表明,本文提出的算法与传统的图像融合算法相比不仅在主观视觉上取得较好的效果,而且在客观标准上也有了一定的提高。 展开更多
关键词 关键词 图像融合 非下采样剪切波变换(NSST) 脉冲耦合神经网络(PCNN) 空间频率 拉普拉斯能量和
在线阅读 下载PDF
基于改进的脉冲耦合神经网络的红外目标分割方法 被引量:11
18
作者 孔祥维 黄静 石浩 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2001年第5期365-369,共5页
针对红外目标的特点 ,提出了一种基于直方图的改进脉冲耦合神经网络 ( PCNN)图像分割方法 ,本算法摒弃了原有脉冲耦合神经网络模型中的时间指数下降机制 ,利用灰度直方图的知识直接获得 PCNN的分割门限 ,同时保留了弥补空间罅隙和灰度... 针对红外目标的特点 ,提出了一种基于直方图的改进脉冲耦合神经网络 ( PCNN)图像分割方法 ,本算法摒弃了原有脉冲耦合神经网络模型中的时间指数下降机制 ,利用灰度直方图的知识直接获得 PCNN的分割门限 ,同时保留了弥补空间罅隙和灰度微小变化的优点 .实验表明本算法分割得到的目标区域更加完整 。 展开更多
关键词 图像分割 脉冲耦合神经网络 红外目标 直方图 PCNN 红外对抗技术 图像处理
在线阅读 下载PDF
一种自适应织物疵点图像分割的方法 被引量:6
19
作者 石美红 付蓉 +1 位作者 毛江辉 张旭凤 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期743-750,共8页
由于受到光照、噪声以及组织纹理等因素的影响,使得织物疵点图像分割一直是织物疵点检测研究中的热点和难点问题.针对常见织物疵点大多在相邻纱线上带有纬向或经向的方向性变异的特点,提出了提取织物图像变异度特征及基于此的简化脉冲... 由于受到光照、噪声以及组织纹理等因素的影响,使得织物疵点图像分割一直是织物疵点检测研究中的热点和难点问题.针对常见织物疵点大多在相邻纱线上带有纬向或经向的方向性变异的特点,提出了提取织物图像变异度特征及基于此的简化脉冲耦合神经网络(Pulse-Coupled Neural Network,PCNN)的织物图像疵点分割的新方法.实验结果表明,本方法不仅对常见的织物疵点能进行快速、准确地分割,而且具有一定的健壮性. 展开更多
关键词 织物疵点 变异度 脉冲耦合神经网(PCNN) 点火 同步
在线阅读 下载PDF
基于PCNN的图像二值化及分割评价方法 被引量:13
20
作者 马义德 苏茂君 陈锐 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期49-53,共5页
针对目前图像二值化方法通用性不强、自适应阈值选取难,以及单一图像分割评价缺乏可靠性的问题,对基于脉冲耦合神经网络(PCNN)的图像二值化方法及其参数选择进行了研究,提出了一种综合考虑多种评价准则的用于评价图像分割效果的方法.实... 针对目前图像二值化方法通用性不强、自适应阈值选取难,以及单一图像分割评价缺乏可靠性的问题,对基于脉冲耦合神经网络(PCNN)的图像二值化方法及其参数选择进行了研究,提出了一种综合考虑多种评价准则的用于评价图像分割效果的方法.实验结果表明:基于PCNN的二值化方法非常适合于各类图像的分割,具有分割精度高的特点;与单一评价方法相比,文中的综合评价方法能够更加客观准确地反映分割方法的分割效果. 展开更多
关键词 脉冲耦合神经网络 二值化 图像分割 评价准则
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部