期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMD-MCKD的微弱故障信号降噪及冲击特征增强方法
被引量:
1
1
作者
费红博
张超
+2 位作者
吴乐
徐帅
张敬
《机电工程》
北大核心
2025年第2期237-246,共10页
针对强噪声背景下滚动轴承早期故障冲击信号微弱,故障特征难以提取的问题,提出了一种基于参数自适应变分模态分解(VMD)与最大相关峭度解卷积(MCKD)的滚动轴承故障诊断方法(微弱故障信号降噪及冲击特征增强方法)。首先,采用时频域差值信...
针对强噪声背景下滚动轴承早期故障冲击信号微弱,故障特征难以提取的问题,提出了一种基于参数自适应变分模态分解(VMD)与最大相关峭度解卷积(MCKD)的滚动轴承故障诊断方法(微弱故障信号降噪及冲击特征增强方法)。首先,采用时频域差值信息引导VMD,并引入相似系数差值和能量差值比作为迭代收敛条件,重新设定了适用于信号分解的终止准则;然后,采用改进的减法平均优化算法,对MCKD中的解卷周期T、移位数M和滤波器长度L进行了优化,确保了参数组合的最佳性;借助MCKD方法的冲击特征提取能力,精确获取了目标周期性冲击信号;最后,依托内蒙古科技大学机械工程学院配备的HZXT-DS-003型双跨转子滚动轴承试验台,构建了故障轴承数据集,对基于VMD-MCKD的滚动轴承故障诊断方法的有效性进行了验证。研究结果表明:采用该方法能有效抑制噪声,显著增强信号的周期冲击特性、故障特征频率及其倍频,从而完成了对滚动轴承早期微弱故障的准确诊断;与其他方法相比,该方法在频谱中更为突出地展现故障特征频率及其倍频峰值,且信噪比提升了78%;此外,即使在不同信噪比的噪声环境下,该方法仍能保持卓越的信号处理能力。
展开更多
关键词
滚动轴承
早期故障特征
变分模态分解
最大相关峭度解卷积
参数自适应
周期性冲击信号
在线阅读
下载PDF
职称材料
基于改进麻雀算法优化变分时域分解的往复机械冲击特征提取方法
2
作者
聂志勇
隋立林
马波
《机电工程》
北大核心
2025年第8期1502-1511,共10页
往复机械壳体振动信号往往由多个不同的冲击源共同作用产生。针对往复机械壳体振动信号在时域上相互叠加、耦合且振动信号多源冲击时域间隔分布不规则,从而导致信号分解难度大的问题,提出了一种改进麻雀搜索算法(ISSA)优化变分时域分解(...
往复机械壳体振动信号往往由多个不同的冲击源共同作用产生。针对往复机械壳体振动信号在时域上相互叠加、耦合且振动信号多源冲击时域间隔分布不规则,从而导致信号分解难度大的问题,提出了一种改进麻雀搜索算法(ISSA)优化变分时域分解(VTDD)的往复机械冲击特征自适应提取新方法。首先,采用Circle混沌映射初始化麻雀种群,引入仿生鱼鹰攻击鱼类的模型,改进了发现者位置更新策略,从而避免了搜索算法陷入局部最优;然后,基于ISSA迭代搜索最优适应度值对应的VTDD最优参数组合,完成了多源冲击信号自适应分解,得到了分解子冲击信号的时域中心及能量信息;最后,利用大头瓦磨损故障和气缸余隙不当的实际工程案例数据,将ISSA-VTDD方法和传统的VTDD方法进行了对比分析。研究结果表明:ISSA优化VTDD能高效地搜索出VTDD最优的预设参数组合,精确有效地提取故障冲击特征,迭代次数和适应度分别为11次和5.25;ISSA-VTDD方法对各种复杂工况、不同信号特性都具有良好适应性;与其他同类方法的对比结果表明,ISSA-VTDD方法具有最高的冲击信号重构精度,即分解效果最优。可见ISSA-VTDD方法具有更优越的冲击时域特征提取能力。
展开更多
关键词
往复机械壳体振动信号
改进麻雀搜索算法
变分时域分解
多源冲击信号自适应分解
冲击时域特征提取
迭代次数
在线阅读
下载PDF
职称材料
题名
基于VMD-MCKD的微弱故障信号降噪及冲击特征增强方法
被引量:
1
1
作者
费红博
张超
吴乐
徐帅
张敬
机构
内蒙古科技大学机械工程学院
内蒙古自治区机电系统智能诊断与控制重点实验室
出处
《机电工程》
北大核心
2025年第2期237-246,共10页
基金
国家自然科学基金资助项目(52365014)
中央引导地方科技发展资金项目(2022ZY0221)。
文摘
针对强噪声背景下滚动轴承早期故障冲击信号微弱,故障特征难以提取的问题,提出了一种基于参数自适应变分模态分解(VMD)与最大相关峭度解卷积(MCKD)的滚动轴承故障诊断方法(微弱故障信号降噪及冲击特征增强方法)。首先,采用时频域差值信息引导VMD,并引入相似系数差值和能量差值比作为迭代收敛条件,重新设定了适用于信号分解的终止准则;然后,采用改进的减法平均优化算法,对MCKD中的解卷周期T、移位数M和滤波器长度L进行了优化,确保了参数组合的最佳性;借助MCKD方法的冲击特征提取能力,精确获取了目标周期性冲击信号;最后,依托内蒙古科技大学机械工程学院配备的HZXT-DS-003型双跨转子滚动轴承试验台,构建了故障轴承数据集,对基于VMD-MCKD的滚动轴承故障诊断方法的有效性进行了验证。研究结果表明:采用该方法能有效抑制噪声,显著增强信号的周期冲击特性、故障特征频率及其倍频,从而完成了对滚动轴承早期微弱故障的准确诊断;与其他方法相比,该方法在频谱中更为突出地展现故障特征频率及其倍频峰值,且信噪比提升了78%;此外,即使在不同信噪比的噪声环境下,该方法仍能保持卓越的信号处理能力。
关键词
滚动轴承
早期故障特征
变分模态分解
最大相关峭度解卷积
参数自适应
周期性冲击信号
Keywords
rolling bearing
early fault characteristic
variational mode
decomposition
(VMD)
maximum correlation kurtosis deconvolution(MCKD)
parameter self-
adapt
ation
periodic
impact
signal
分类号
TH133.3 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
基于改进麻雀算法优化变分时域分解的往复机械冲击特征提取方法
2
作者
聂志勇
隋立林
马波
机构
国能数智科技开发(北京)有限公司
北京化工大学机电工程学院
出处
《机电工程》
北大核心
2025年第8期1502-1511,共10页
基金
国家自然科学基金资助项目(62273025)。
文摘
往复机械壳体振动信号往往由多个不同的冲击源共同作用产生。针对往复机械壳体振动信号在时域上相互叠加、耦合且振动信号多源冲击时域间隔分布不规则,从而导致信号分解难度大的问题,提出了一种改进麻雀搜索算法(ISSA)优化变分时域分解(VTDD)的往复机械冲击特征自适应提取新方法。首先,采用Circle混沌映射初始化麻雀种群,引入仿生鱼鹰攻击鱼类的模型,改进了发现者位置更新策略,从而避免了搜索算法陷入局部最优;然后,基于ISSA迭代搜索最优适应度值对应的VTDD最优参数组合,完成了多源冲击信号自适应分解,得到了分解子冲击信号的时域中心及能量信息;最后,利用大头瓦磨损故障和气缸余隙不当的实际工程案例数据,将ISSA-VTDD方法和传统的VTDD方法进行了对比分析。研究结果表明:ISSA优化VTDD能高效地搜索出VTDD最优的预设参数组合,精确有效地提取故障冲击特征,迭代次数和适应度分别为11次和5.25;ISSA-VTDD方法对各种复杂工况、不同信号特性都具有良好适应性;与其他同类方法的对比结果表明,ISSA-VTDD方法具有最高的冲击信号重构精度,即分解效果最优。可见ISSA-VTDD方法具有更优越的冲击时域特征提取能力。
关键词
往复机械壳体振动信号
改进麻雀搜索算法
变分时域分解
多源冲击信号自适应分解
冲击时域特征提取
迭代次数
Keywords
vibration
signal
of reciprocating machine shell
improved sparrow search algorithm(ISSA)
variational time-domain
decomposition
(VTDD)
adaptive decomposition of multi-source impact signal
impact
time-domain characteristics extraction
iterations
分类号
TH17 [机械工程—机械制造及自动化]
TH133.3 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMD-MCKD的微弱故障信号降噪及冲击特征增强方法
费红博
张超
吴乐
徐帅
张敬
《机电工程》
北大核心
2025
1
在线阅读
下载PDF
职称材料
2
基于改进麻雀算法优化变分时域分解的往复机械冲击特征提取方法
聂志勇
隋立林
马波
《机电工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部