期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
MICROPROCESSOR BASED MODEL FOLLOWING ADAPTIVE CONTROL SYSTEM FOR CSIM DRIVES
1
作者 张春明 左敦稳 王珉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期40+35-39,共6页
A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is ... A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is reduced to simplify the design without degrading much of the performance. Model following adaptive control laws in discrete form are derived. These laws satisfy the hyperstability condition for taking care of the load and machine parameter changes of the drive. A microprocessor 8098 is used to develop the speed controller. The implementation of the control system uses only available variables of the reference model and the controlled plant. Experimental results are given to demonstrate the good performance of the system. 展开更多
关键词 induction motors frequency converters microprocessors adaptive control model following
在线阅读 下载PDF
Adaptive Robust Servo Control for Vertical Electric Stabilization System of Tank and Experimental Validation 被引量:2
2
作者 Darui Lin Xiuye Wang +1 位作者 Yimin Wang Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期326-342,共17页
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin... A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time. 展开更多
关键词 adaptive robust servo control Experimental validation Nonlinearity compensation system uncertainty Vertical electric stabilization system
在线阅读 下载PDF
Nonlinear robust adaptive control for bidirectional stabilization system of all-electric tank with unknown actuator backlash compensation and disturbance estimation 被引量:1
3
作者 Shusen Yuan Wenxiang Deng +1 位作者 Jianyong Yao Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期144-158,共15页
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin... Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach. 展开更多
关键词 Bidirectional stabilization system Robust control adaptive control Backlash inverse Disturbance estimation
在线阅读 下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
4
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
在线阅读 下载PDF
The Algorithms of Adaptive Active Noise Control Systems in a Duct
5
作者 韩秀苓 程凡 +1 位作者 高建林 李传光 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期85+80-85,共7页
On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in t... On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system. 展开更多
关键词 adaptive control system adaptive filters noise control /adaptive algorithm LMS algorithm
在线阅读 下载PDF
Adaptive Nonlinear PID Control and Rule-Based Compensation for Systems with Backlash 被引量:1
6
作者 任雪梅 李岩 龚至豪 《Journal of Beijing Institute of Technology》 EI CAS 2000年第2期195-200,共6页
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin... The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method. 展开更多
关键词 nonlinear systems adaptive nonlinear PID control BACKLASH
在线阅读 下载PDF
Application of Generalized Predictive Adaptive Control Algorithm in the Design of Missile Control System
7
作者 王正杰 李霁红 +1 位作者 张天桥 饶思成 《Journal of Beijing Institute of Technology》 EI CAS 2001年第4期356-363,共8页
To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch c... To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch channel of a missile is designed by using this algorithm. The simulations verify that the designed controller can meet the demands of the task well. 展开更多
关键词 generalized predictive control adaptive control ROBUSTNESS missile control system
在线阅读 下载PDF
DECENTRALIZED ADAPTIVE CONTROL FOR LINEAR TIME INVARIENT SYSTEMS WITH FIRST ORDER INTERCONNECTIONS
8
作者 黄金泉 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期80-85,共6页
A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve ... A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions. 展开更多
关键词 decentralized control model reference adaptive control control law numerical simulation
在线阅读 下载PDF
BACKSTEPPING-BASED ADAPTIVE CONTROL AND SYNCHRONIZATION OF CHAOTIC SYSTEMS
9
作者 樊春霞 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期196-200,共5页
Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is ... Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance. 展开更多
关键词 chaos synchronization Backstepping method adaptive control
在线阅读 下载PDF
Design of a Kind of Model Reference Adaptive Missile Control System 被引量:1
10
作者 王军 张天桥 王正杰 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期84-88,共5页
Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the ... Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory. 展开更多
关键词 dive overhead attack anti tank missile model reference adaptive control missile control system
在线阅读 下载PDF
The prediction of projectile-target intersection for moving tank based on adaptive robust constraint-following control and interval uncertainty analysis 被引量:1
11
作者 Cong Li Xiuye Wang +2 位作者 Yuze Ma Fengjie Xu Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期351-363,共13页
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method... To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error. 展开更多
关键词 Tank stability control Constraint-following adaptive robust control Uncertainty analysis Prediction of projectile-target intersection
在线阅读 下载PDF
Generalized projective synchronization of chaotic systems via adaptive learning control 被引量:19
12
作者 孙云平 李俊民 +1 位作者 王江安 王辉林 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期119-126,共8页
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovski... In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. 展开更多
关键词 generalized projective synchronisation chaotic systems adaptive learning control Lyapunov--Krasovskii functional
在线阅读 下载PDF
Complete synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller 被引量:4
13
作者 肖玉柱 徐伟 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1597-1602,共6页
In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the... In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise. 展开更多
关键词 complete synchronization bi-directionally coupled systems adaptive control
在线阅读 下载PDF
Adaptive VSG control of flywheel energy storage array for frequency support in microgrids
14
作者 Penghui Ren Jingwen Zheng +5 位作者 Liang Qin Ruyin Sun Shiqi Yang Jiangjun Ruan Kaipei Liu Tinghui Ouyang 《Global Energy Interconnection》 EI CSCD 2024年第5期563-576,共14页
The application of virtual synchronous generator(VSG)control in flywheel energy storage systems(FESS)is an effective solution for addressing the challenges related to reduced inertia and inadequate power supply in mic... The application of virtual synchronous generator(VSG)control in flywheel energy storage systems(FESS)is an effective solution for addressing the challenges related to reduced inertia and inadequate power supply in microgrids.Considering the significant variations among individual units within a flywheel array and the poor frequency regulation performance under conventional control approaches,this paper proposes an adaptive VSG control strategy for a flywheel energy storage array(FESA).First,by leveraging the FESA model,a variable acceleration factor is integrated into the speed-balance control strategy to effectively achieve better state of charge(SOC)equalization across units.Furthermore,energy control with a dead zone is introduced to prevent SOC of the FESA from exceeding the limit.The dead zone parameter is designed based on the SOC warning intervals of the flywheel array to mitigate its impact on regular operation.In addition,VSG technology is applied for the grid-connected control of the FESA,and the damping characteristic of the VSG is decoupled from the primary frequency regulation through power differential feedback.This ensures optimal dynamic performance while reducing the need for frequent involvement in frequency regulation.Subsequently,a parameter design method is developed through a small-signal stability analysis.Consequently,considering the SOC of the FESA,an adaptive control strategy for the inertia damping and the P/ωdroop coefficient of the VSG control is proposed to optimize the grid support services of the FESA.Finally,the effectiveness of the proposed control methods is demonstrated through electromagnetic transient simulations using MATLAB/Simulink. 展开更多
关键词 Flywheel array control Virtual Synchronous Generator MICROGRID Frequency regulation adaptive control
在线阅读 下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
15
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile adaptive control Parameter identification Quaternion control
在线阅读 下载PDF
Adaptive robust control for triple avoidance - striking - arrival performance of uncertain tank mechanical systems 被引量:3
16
作者 Zong-fan Wang Guo-lai Yang +2 位作者 Xiu-ye Wang Qin-qin Sun Yu-ze Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1483-1497,共15页
This paper puts forward an unprecedented avoidance-striking-arrival problem aiming to address the need for tank's uncertain mechanical systems on the intelligent battlefield.The associated system uncertainties(pos... This paper puts forward an unprecedented avoidance-striking-arrival problem aiming to address the need for tank's uncertain mechanical systems on the intelligent battlefield.The associated system uncertainties(possibly rapid)are time-varying but bounded(possibly unknown).The goal is to design a controller that enables the tank to aim at and attack the enemy tank while keeping itself(out of the enemy fire zone).The tank maintains this condition until reaching the predefined region.In this paper,an approximate constraint following control method is adopted to solve this problem,and the original constraints are creatively divided into two categories:the avoidance-tracking constraint and the striking-arrival constraint.An adaptive robust control method is proposed and consequently verified through simulation experiments.It is proved that the system fully obeys the avoidance-tracking-constraint and strictly obeys the striking-arrival constraint under the control input.Besides,the control of the tank vehicle running system and tank gun bidirectional stabilization system are unified to deal with the control signal delay caused by complex uncertainties on the battlefield.Overall,this paper reduced the delay of signal transmission in the system while solved the avoidance-striking-arrival problem. 展开更多
关键词 adaptive robust control Multivariable tank system Uncertainty Constraint following Avoidance-striking-arrival
在线阅读 下载PDF
A new four-dimensional hyperchaotic Lorenz system and its adaptive control 被引量:3
17
作者 司刚全 曹晖 张彦斌 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期229-237,共9页
Based on the Lorenz chaotic system, this paper constructs a new four-dimensional hyperchaotic Lorenz system, and studies the basic dynamic behaviours of the system. The Routh-Hurwitz theorem is applied to derive the s... Based on the Lorenz chaotic system, this paper constructs a new four-dimensional hyperchaotic Lorenz system, and studies the basic dynamic behaviours of the system. The Routh-Hurwitz theorem is applied to derive the stability conditions of the proposed system. Furthermore, based on Lyapunov stability theory, an adaptive controller is designed and the new four-dimensional hyperchaotic Lorenz system is controlled at equilibrium point. Numerical simulation results are presented to illustrate the effectiveness of this method. 展开更多
关键词 hyperchaotic Lorenz system adaptive control Lyapunov stability theory
在线阅读 下载PDF
A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control 被引量:2
18
作者 J P Singh V T Pham +3 位作者 T Hayat S Jafari F E Alsaadi B K Roy 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期231-239,共9页
This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. T... This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy. 展开更多
关键词 new hyperjerk chaotic system stable equilibrium hidden attractors adaptive backstepping control SYNCHRONIZATION
在线阅读 下载PDF
Longitudinal Control Strategy for Vehicle Adaptive Cruise Control Systems 被引量:2
19
作者 吴利军 刘昭度 马岳峰 《Journal of Beijing Institute of Technology》 EI CAS 2007年第1期28-33,共6页
A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative veloc... A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety. 展开更多
关键词 adaptive cruise control (ACC) linear quadratic throttle/brake control neural network
在线阅读 下载PDF
Adaptive control of bifurcation and chaos in a time-delayed system 被引量:1
20
作者 李宁 袁惠群 +1 位作者 孙海义 张庆灵 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期245-255,共11页
In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,t... In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes,the adaptive control idea is introduced,i.e.,the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws,respectively.The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem.The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods.They have the advantages of increased stability,adaptability to the changes of the system parameters,control cost saving,and simplicity.Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods.A comparison of the two adaptive control methods is also made in an experimental study. 展开更多
关键词 DELAY parameter perturbation control hybrid control adaptive control
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部