A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
自适应最稀疏时频分析(Aadaptive and Sparsest Time-Frequency Analysis,ASTFA)是一种新的时频分析方法,该方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解。为解决ASTFA方法初始相位函数的选择问题,采用了分辨率...自适应最稀疏时频分析(Aadaptive and Sparsest Time-Frequency Analysis,ASTFA)是一种新的时频分析方法,该方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解。为解决ASTFA方法初始相位函数的选择问题,采用了分辨率搜索改进的ASTFA方法,并进一步结合阶次分析方法提出了基于ASTFA的阶次方法。该方法首先采用改进的ASTFA方法对原始信号进行分解同时获得分量的瞬时幅值,然后对瞬时幅值进行阶次分析从而提取故障特征信息。将该方法应用于变速齿轮传动过程中的时变非平稳振动信号的分析与处理,仿真与实验分析表明该方法能够准确提取变速齿轮的故障特征信息,具有一定的优越性。展开更多
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分...自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。展开更多
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解.为了研究ASTFA的分解能力,在定义分解能力评价指标(Evaluation Index of Decompositi...自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解.为了研究ASTFA的分解能力,在定义分解能力评价指标(Evaluation Index of Decomposition Capacity,EIDC)的基础上,以双谐波分量合成信号模型来研究幅值比、频率比、初始相位差对ASTFA的影响.同时,将ASTFA方法与经验模态分解(Empirical Mode Decomposition,EMD)、局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)进行对比分析.研究结果表明,ASTFA方法的分解能力基本不受幅值比的影响,可分解的极限频率比较大,不受初始相位差的影响,该方法的分解能力具有明显的优越性.展开更多
研究了基于自适应最稀疏时频分析方法的非线性系统识别方法。通过自适应最稀疏时频分析方法识别了Duffing非线性系统和Van der Pol非线性系统的自由振动响应以及这两种系统在简谐激励下的响应,得到了响应的瞬时振幅和瞬时频率,并用最小...研究了基于自适应最稀疏时频分析方法的非线性系统识别方法。通过自适应最稀疏时频分析方法识别了Duffing非线性系统和Van der Pol非线性系统的自由振动响应以及这两种系统在简谐激励下的响应,得到了响应的瞬时振幅和瞬时频率,并用最小二乘曲线拟合了非线性系统识别参数及简谐激励的大小和频率。分析了识别精度的影响因素,与基于小波分析方法和希尔伯特-黄变换方法的非线性系统识别方法进行了比较,研究表明自适应最稀疏时频分析方法可以有效地识别典型非线性系统参数。展开更多
针对行星齿轮箱故障信号的调制特点,提出基于自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,ASTFA)和对称差分能量算子(Symmetric Difference Energy Operator,SDEO)相结合的解调方法,用于提取故障信号的瞬时幅...针对行星齿轮箱故障信号的调制特点,提出基于自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,ASTFA)和对称差分能量算子(Symmetric Difference Energy Operator,SDEO)相结合的解调方法,用于提取故障信号的瞬时幅值和瞬时频率信息。采用ASTFA方法分解行星齿轮箱故障信号,得到若干个单分量信号,采用SDEO进行解调,得到各单分量信号的瞬时幅值和瞬时频率,并计算得到包络谱。采用该方法分析行星齿轮箱故障仿真信号和故障实际信号,结果表明,该方法能准确地提取故障特征,实现行星齿轮箱故障诊断。展开更多
自适应最稀疏时频分析(Adaptive and Sparsest Time-Frequency Analysis,ASTFA)方法是一种新的信号分解方法,该方法将信号分解问题转化为优化问题,以得到信号的最稀疏解。优化过程采用高斯-牛顿迭代算法,但高斯-牛顿迭代算法对初值依赖...自适应最稀疏时频分析(Adaptive and Sparsest Time-Frequency Analysis,ASTFA)方法是一种新的信号分解方法,该方法将信号分解问题转化为优化问题,以得到信号的最稀疏解。优化过程采用高斯-牛顿迭代算法,但高斯-牛顿迭代算法对初值依赖性高,采用黄金分割法(Golden Section,GS)对ASTFA方法进行初值搜索,提出了基于黄金分割搜索初值的ASTFA方法(GS-ASTFA),仿真信号的分析结果验证了改进方法的有效性。继而采用该方法提取了滚动轴承故障特征值,并成功地进行了故障特征值趋势分析和寿命预测。展开更多
Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler s...Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler spectrum, the low signal to clutter ratio (SCR) environment degrades the performance of signal process- ing algorithms. This paper addresses this challenging problem by using an S2-method and an adaptive clutter rejection scheme. The proposed S2-method improves the S-method by eliminating inter- ference between signals, and thus it enables multi-target signals to be reconstructed individually. The proposed adaptive clutter rejec- tion scheme is based on an adaptive notch filter, which is designed according to the envelop of the clutter spectrum. Experiments with simulated targets added into radar sea clutter echo and real air target data illustrate the effectiveness of the proposed method.展开更多
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
文摘自适应最稀疏时频分析(Aadaptive and Sparsest Time-Frequency Analysis,ASTFA)是一种新的时频分析方法,该方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解。为解决ASTFA方法初始相位函数的选择问题,采用了分辨率搜索改进的ASTFA方法,并进一步结合阶次分析方法提出了基于ASTFA的阶次方法。该方法首先采用改进的ASTFA方法对原始信号进行分解同时获得分量的瞬时幅值,然后对瞬时幅值进行阶次分析从而提取故障特征信息。将该方法应用于变速齿轮传动过程中的时变非平稳振动信号的分析与处理,仿真与实验分析表明该方法能够准确提取变速齿轮的故障特征信息,具有一定的优越性。
文摘自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。
文摘自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解.为了研究ASTFA的分解能力,在定义分解能力评价指标(Evaluation Index of Decomposition Capacity,EIDC)的基础上,以双谐波分量合成信号模型来研究幅值比、频率比、初始相位差对ASTFA的影响.同时,将ASTFA方法与经验模态分解(Empirical Mode Decomposition,EMD)、局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)进行对比分析.研究结果表明,ASTFA方法的分解能力基本不受幅值比的影响,可分解的极限频率比较大,不受初始相位差的影响,该方法的分解能力具有明显的优越性.
文摘研究了基于自适应最稀疏时频分析方法的非线性系统识别方法。通过自适应最稀疏时频分析方法识别了Duffing非线性系统和Van der Pol非线性系统的自由振动响应以及这两种系统在简谐激励下的响应,得到了响应的瞬时振幅和瞬时频率,并用最小二乘曲线拟合了非线性系统识别参数及简谐激励的大小和频率。分析了识别精度的影响因素,与基于小波分析方法和希尔伯特-黄变换方法的非线性系统识别方法进行了比较,研究表明自适应最稀疏时频分析方法可以有效地识别典型非线性系统参数。
文摘针对行星齿轮箱故障信号的调制特点,提出基于自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,ASTFA)和对称差分能量算子(Symmetric Difference Energy Operator,SDEO)相结合的解调方法,用于提取故障信号的瞬时幅值和瞬时频率信息。采用ASTFA方法分解行星齿轮箱故障信号,得到若干个单分量信号,采用SDEO进行解调,得到各单分量信号的瞬时幅值和瞬时频率,并计算得到包络谱。采用该方法分析行星齿轮箱故障仿真信号和故障实际信号,结果表明,该方法能准确地提取故障特征,实现行星齿轮箱故障诊断。
基金supported by the State Key Program of National Natural Science Foundation of China(61032011)
文摘Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler spectrum, the low signal to clutter ratio (SCR) environment degrades the performance of signal process- ing algorithms. This paper addresses this challenging problem by using an S2-method and an adaptive clutter rejection scheme. The proposed S2-method improves the S-method by eliminating inter- ference between signals, and thus it enables multi-target signals to be reconstructed individually. The proposed adaptive clutter rejec- tion scheme is based on an adaptive notch filter, which is designed according to the envelop of the clutter spectrum. Experiments with simulated targets added into radar sea clutter echo and real air target data illustrate the effectiveness of the proposed method.