期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
基于IPSO算法优化SVM的睡眠分期模型
1
作者 张宇 白国长 王成 《传感器与微系统》 北大核心 2025年第8期138-142,共5页
针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;... 针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;其次,提取EEG信号的时域、频域、非线性特征;最后,通过IPSO-SVM算法建立睡眠分期模型。该模型在PSO算法中引入模拟退火算法来提升算法的搜索能力,同时引入惯性权重自适应变异使粒子能够跳出局部最优解。使用ISRUC-Sleep数据集的前6位受试者数据对IPSO-SVM分类模型进行验证。结果表明:IPSO-SVM模型的平均睡眠分期准确率为92.34%,K系数为0.88,改进的睡眠分期模型具有较高的准确率和系统稳定性。 展开更多
关键词 粒子群优化算法 支持向量机 模拟退火 自适应变异
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
2
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(apso)算法 反向传播神经网络(BPNN) 腐蚀速率 预测模型
在线阅读 下载PDF
基于GPR代理模型和GA-APSO混合优化算法的软基水闸底板脱空反演 被引量:6
3
作者 李火坤 柯贤勇 +3 位作者 黄伟 刘双平 唐义员 方静 《振动与冲击》 EI CSCD 北大核心 2023年第14期1-10,29,共11页
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自... 软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。 展开更多
关键词 软基水闸 底板脱空反演 动力学方法 高斯过程回归(GPR)代理模型 遗传-自适应惯性权重粒子群(GA-apso)混合优化算法
在线阅读 下载PDF
自适应粒子群优化算法(APSO)在膜下滴灌优化灌溉中的应用 被引量:4
4
作者 罗志平 《节水灌溉》 北大核心 2011年第8期51-54,共4页
在考虑了灌溉水量、作物水分响应模型、降雨量、不同生育阶段缺水对产量敏感指数、作物市场价格、农业灌溉用水价格、膜下滴灌成本价格等因素下,建立了农作物经济效益最优的多约束、非线性灌溉模型。将APSO算法进行灌溉模型优化求解。... 在考虑了灌溉水量、作物水分响应模型、降雨量、不同生育阶段缺水对产量敏感指数、作物市场价格、农业灌溉用水价格、膜下滴灌成本价格等因素下,建立了农作物经济效益最优的多约束、非线性灌溉模型。将APSO算法进行灌溉模型优化求解。利用新疆棉花膜下滴灌实验所得数据,得出了作物在不同范围有限灌水量下棉花各生育阶段间灌水量的最优效益分配,求解的结果显示该灌溉模型能很好地解决了作物非充分灌溉下优化灌溉问题。 展开更多
关键词 自适应粒子群优化算法(apso) 灌溉模型 膜下滴灌
在线阅读 下载PDF
基于PSO-SA算法的源项反演方法研究 被引量:2
5
作者 刘璐 张绍阳 +1 位作者 冉思雨 沈柳彤 《现代电子技术》 北大核心 2024年第1期100-104,共5页
针对大气污染事故突发时,事故发生点无法确定或人员不能接近的情况,研究了基于环境监测数据源项反演以获取事故源项数据的技术,设计实现了一种基于粒子群-模拟退火源项反演方法。采用自适应方法调整惯性权重系数,与高斯烟羽扩散模型结合... 针对大气污染事故突发时,事故发生点无法确定或人员不能接近的情况,研究了基于环境监测数据源项反演以获取事故源项数据的技术,设计实现了一种基于粒子群-模拟退火源项反演方法。采用自适应方法调整惯性权重系数,与高斯烟羽扩散模型结合,对事故源项数据进行反演。实验结果显示:在所选监测点监测数据的反演实验中,基于粒子群-模拟退火算法(PSO-SA)结合了两种算法的优势,能够获得与期望值较为符合的反演结果。进一步分析了监测点数据误差及监测点数量对反演结果的影响,并将文中方法与粒子群算法(PSO)进行对比,同等条件下,较粒子群算法精度提高了8%,能够快速实现对大气污染源强和位置的准确估计。 展开更多
关键词 源项反演 大气污染 粒子群算法 模拟退火算法 高斯烟羽 自适应惯性权重
在线阅读 下载PDF
基于AG-MOPSO的含风电配电网无功优化 被引量:1
6
作者 苏福清 匡洪海 钟浩 《电源学报》 CSCD 北大核心 2024年第4期192-199,共8页
针对风电机组并网出力的不确定性,采用基于概率发生的场景分析法将不确定性模型转换为不同发生概率的多场景问题,建立以有功网损和电压偏差最小为目标的无功优化模型。针对传统方法得到的Pareto前沿多样性较差的问题,提出基于自适应网... 针对风电机组并网出力的不确定性,采用基于概率发生的场景分析法将不确定性模型转换为不同发生概率的多场景问题,建立以有功网损和电压偏差最小为目标的无功优化模型。针对传统方法得到的Pareto前沿多样性较差的问题,提出基于自适应网格的多目标粒子群优化AG-MOPSO(adaptive grid multi-objective particle swarm optimization)算法。该算法采用自适应网格得到外部档案库中粒子的密度,并根据密度信息以轮盘赌机制选取全局最优粒子和维护外部存储库的规模,有效地保证了Pareto前沿分布的均匀性和多样性。运用该算法对含风电的IEEE 33节点系统进行无功优化计算,并与已有NSGA-Ⅱ算法进行比较,结果表明所提算法得到的Pareto前沿较好,验证了该模型和算法的可行性。 展开更多
关键词 场景分析 多目标无功优化 自适应网格 粒子群优化算法 PARETO前沿
在线阅读 下载PDF
基于PSO-LSN算法的冲击响应谱时域波形合成方法研究
7
作者 蒋辰玮 王军评 严侠 《振动与冲击》 EI CSCD 北大核心 2024年第23期102-107,118,共7页
针对冲击响应谱(shock response spectrum,SRS)试验过程中,试件受非线性、局部共振等因素影响导致控制易出现局部超差,需多次修正迭代时域基波波形参数的问题,通过分析冲击响应谱试验结果主要影响因素及变化机理,提出基于自适应学习的... 针对冲击响应谱(shock response spectrum,SRS)试验过程中,试件受非线性、局部共振等因素影响导致控制易出现局部超差,需多次修正迭代时域基波波形参数的问题,通过分析冲击响应谱试验结果主要影响因素及变化机理,提出基于自适应学习的空间邻域驱动策略粒子群算法(particle swarm optimization based on learning spatial neighborhood driven,PSO-LSN)。根据粒子邻域相似性增强局部空间搜索能力,共享最优位置与速度信息,并结合自适应学习机制调整更新步长,实现对基于合成基波法的冲击响应谱时域波形合成优化。结果表明,基于PSO-LSN算法的时域波形合成在迭代前期对决策域空间有着较好的全局搜索能力,随着迭代次数的增加,其局部精细搜索能力明显提升,可获得高精准度的仿真计算结果,有效验证了算法的准确性和实用性,可为进一步提升冲击响应谱时域波形合成计算精度提供支撑。 展开更多
关键词 冲击响应谱(SRS) 时域波形合成 粒子群算法(pso) 空间邻域驱动策略 自适应学习机制
在线阅读 下载PDF
基于改进PSO算法的HVDC PI控制器优化设计 被引量:27
8
作者 周孝法 陈陈 +1 位作者 宋正强 高旭 《高电压技术》 EI CAS CSCD 北大核心 2009年第2期408-414,共7页
为了对直流输电系统的PI控制器进行优化设计,提出了一种自适应粒子群优化(APSO)算法以克服传统粒子群优化(PSO)算法易于陷入局部极值、使算法早熟的缺陷。在APSO算法中粒子群寻优计算时,每个粒子的惯性权重系数根据该粒子当前的适应值... 为了对直流输电系统的PI控制器进行优化设计,提出了一种自适应粒子群优化(APSO)算法以克服传统粒子群优化(PSO)算法易于陷入局部极值、使算法早熟的缺陷。在APSO算法中粒子群寻优计算时,每个粒子的惯性权重系数根据该粒子当前的适应值而自适应地变化,使得适应值好的粒子趋向于做当前最优解附近的精细搜索,适应值差的粒子则以较大步长对可行域进行全局粗略探测以便有机会发现新的更好的解,从而使得整个群体保持了多样性和良好的收敛特性。基于APSO算法,给出了一套系统化的直流输电PI控制器优化设计方法。通过对CIGRE HVDC Benchmark Model的仿真计算,以及与"稳定边界法"设计结果的比较、分析,证明了所提出的设计方法的可行性和有效性。 展开更多
关键词 高压直流输电 PI控制器 动态响应特性 电力系统 粒子群优化(pso)算法 自适应惯性权重系数
在线阅读 下载PDF
考虑客户需求重要度的快递包裹配送车辆路径问题 被引量:1
9
作者 王勇 赵小琴 +1 位作者 苟梦圆 谢红霞 《包装工程》 北大核心 2025年第1期203-213,共11页
目的针对客户在配送服务方面的个性化和高质量要求,在快递包裹配送过程中考虑客户需求重要度的差异以提高客户服务质量,并降低物流网络的运营总成本。方法首先,考虑客户需求重要度对违反服务时间窗惩罚成本的影响,构建物流运营总成本最... 目的针对客户在配送服务方面的个性化和高质量要求,在快递包裹配送过程中考虑客户需求重要度的差异以提高客户服务质量,并降低物流网络的运营总成本。方法首先,考虑客户需求重要度对违反服务时间窗惩罚成本的影响,构建物流运营总成本最小化的数学模型;其次,设计基于Clarke-Wright节约算法的粒子群优化(CW-PSO)算法求解模型,并在算法中引入自适应更新机制,以提高算法的全局搜索能力和求解质量;然后,将CW-PSO算法与遗传-蚁群优化算法、蚁群优化算法和头脑风暴优化算法进行对比分析,验证CW-PSO算法的有效性;最后,以重庆市某快递包裹配送网络为例,比较分析优化前后各项运营指标变化,并进行基于客户需求重要度的敏感度分析。结果优化后车辆使用数减少了38.9%,物流运营总成本降低了43.1%,将客户划分为5类需求重要度等级得到的优化结果具有优越性。结论本研究所提出的优化模型、求解算法和考虑客户需求重要度可有效提高快递包裹配送网络的服务效率并降低物流运营总成本,进而为物流企业的快递包裹配送问题提供理论参考和决策支持。 展开更多
关键词 客户需求重要度 快递包裹配送 车辆路径问题 CW-pso算法 自适应更新机制
在线阅读 下载PDF
具有自适应随机惯性权重的PSO算法 被引量:13
10
作者 延丽平 曾建潮 《计算机工程与设计》 CSCD 北大核心 2006年第24期4677-4679,4706,共4页
通过对标准PSO算法中惯性权重和全局最好值的分析,提出了一种根据全局最好值的变化而自适应变化的随机惯性权重的方法。通过对5个典型的Benchmark函数的测试,结果表明此方法在收敛速度和全局收敛性方面都较线性递减的惯性权重的方法有... 通过对标准PSO算法中惯性权重和全局最好值的分析,提出了一种根据全局最好值的变化而自适应变化的随机惯性权重的方法。通过对5个典型的Benchmark函数的测试,结果表明此方法在收敛速度和全局收敛性方面都较线性递减的惯性权重的方法有所改进。最后,将改进的PSO算法应用于分类问题,与标准PSO算法与C4.5的结果相比,分类精度和速度都有所提高。 展开更多
关键词 pso算法 惯性权重 全局最好值 自适应随机惯性权重 分类
在线阅读 下载PDF
基于SA-PSO的电力系统无功优化 被引量:6
11
作者 何佳 吴耀武 +1 位作者 娄素华 熊信艮 《电力系统及其自动化学报》 CSCD 北大核心 2007年第5期114-118,共5页
粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated... 粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated annealing particle swarm optimization,SA-PSO)算法,并将其应用于电力系统无功优化。对IEEE14节点系统进行了仿真计算,并与PSO算法作了比较,结果表明SA-PSO算法全局收敛性能及收敛精度均较PSO算法有了较大提高。 展开更多
关键词 电力系统 无功优化 模拟退火粒子群优化算法 自适应
在线阅读 下载PDF
基于改进PSO的自适应FCM聚类算法 被引量:4
12
作者 宣杰 张琳 王汝传 《南京邮电大学学报(自然科学版)》 北大核心 2016年第6期59-64,73,共7页
针对传统模糊C-均值(fuzzy C-means,FCM)聚类算法存在对初始聚类中心选取的敏感性问题,提出一种基于改进粒子群优化(particle swarm optimization,PSO)算法的FCM聚类算法。为进一步提高PSO算法的全局寻优能力,探讨了一种基于自适应惯性... 针对传统模糊C-均值(fuzzy C-means,FCM)聚类算法存在对初始聚类中心选取的敏感性问题,提出一种基于改进粒子群优化(particle swarm optimization,PSO)算法的FCM聚类算法。为进一步提高PSO算法的全局寻优能力,探讨了一种基于自适应惯性因子的改进粒子群算法,该算法不仅优化了全局寻优能力和局部搜索能力,而且也有效解决了早熟现象并避免了后期震荡现象。实验结果表明,将改进PSO用于FCM聚类算法中可以克服对初始中心点选择的敏感性问题,拥有较高的全局寻优能力,聚类精度方面也得到了进一步提升。 展开更多
关键词 改进粒子群优化算法 自适应 早熟 后期震荡
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
13
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子群优化随机森林(apso-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于改进PSO-BP神经网络的教学质量评价模型 被引量:8
14
作者 郭欣 殷子龙 +1 位作者 陈瑛 吴玉佳 《现代电子技术》 2023年第12期146-152,共7页
教学质量评价是教学研究中的重点之一,但已有的数学评价模型不适合解决非线性问题,神经网络模型收敛速度慢、准确率不高。针对以上问题,文中提出一种基于改进PSO(Particle Swarm Optimization)-BP(Back Propagation)神经网络的教学质量... 教学质量评价是教学研究中的重点之一,但已有的数学评价模型不适合解决非线性问题,神经网络模型收敛速度慢、准确率不高。针对以上问题,文中提出一种基于改进PSO(Particle Swarm Optimization)-BP(Back Propagation)神经网络的教学质量评价模型。通过引入动量和自适应学习率优化BP神经网络,采用惯性权重线性递减、学习因子异步变化,并引入速度收缩因子和自适应变异策略来优化PSO算法;再使用PSO粒子群优化算法计算BP神经网络的初始连接权重和阈值,从而提升模型的全局寻优能力和收敛速度、精度。为验证模型效果,使用评价体系指标层的10个指标数据作为模型的输入,评价结果作为输出,进行模型对比实验。实验结果表明,所提模型的准确率达到96.33%,比一般BP神经网络模型提高4.68%,比自适应BP神经网络模型提高4.07%,比PSO-BP神经网络模型提高1.2%,且收敛曲线平稳,整体性能优于其他模型,说明运用该模型能够有效地对教学质量进行评价。 展开更多
关键词 粒子群优化算法 BP神经网络 教学质量评价 自适应变异策略 连接权重 性能对比
在线阅读 下载PDF
基于动量自适应学习率PSO-BP神经网络的钻速预测模型研究 被引量:17
15
作者 刘伟吉 冯嘉豪 +1 位作者 祝效华 李枝林 《科学技术与工程》 北大核心 2023年第24期10264-10272,共9页
机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为... 机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为了实现对钻速的高精度预测,对现有BP (back propagation)神经网络进行优化,提出了一种新的神经网络模型,即动态自适应学习率的粒子群优化BP神经网络,利用录井数据建立目标井预测模型来对钻速进行预测。在训练过程中对BP神经网络进行优化,利用启发式算法,即附加动量法和自适应学习率,将两种方法结合起来形成动态自适应学习率的BP改进算法,提高了BP神经网络的训练速度和拟合精度,获得了更好的泛化性能。将BP神经网络与遗传优化算法(genetic algorithm,GA)和粒子群优化算法(particle swarm optimization,PSO)结合,得到优化后的动态自适应学习率BP神经网络。研究利用XX8-1-2井的录井数据进行实验,对比BP神经网络、PSO-BP神经网络、GA-BP神经网络3种不同的改进后神经网络的预测结果。实验结果表明:优化后的PSO-BP神经网络的预测性能最好,具有更高的效率和可靠性,能够有效的利用工程数据,在有一定数据采集量的区域提供较为准确的ROP预测。 展开更多
关键词 钻速(ROP)预测 BP神经网络 附加动量法 自适应学习率 遗传算法(GA) 粒子群算法(pso)
在线阅读 下载PDF
基于混沌理论和自适应惯性权重的PSO算法优化 被引量:6
16
作者 安鹏 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期1223-1228,共6页
针对粒子群算法固定惯性权重和早熟收敛的缺陷,提出一种动态自适应惯性权重调整策略,有效增强了算法的全局和局部寻优能力;并针对早熟问题,采用混沌映射方法增加种群多样性,同时利用负梯度方向调整群体极值,极大降低了算法陷入局部极值... 针对粒子群算法固定惯性权重和早熟收敛的缺陷,提出一种动态自适应惯性权重调整策略,有效增强了算法的全局和局部寻优能力;并针对早熟问题,采用混沌映射方法增加种群多样性,同时利用负梯度方向调整群体极值,极大降低了算法陷入局部极值的概率.通过在多个常用测试函数上与其他算法比较,证明了所提改进粒子群算法的正确性和有效性. 展开更多
关键词 粒子群优化算法 混沌 惯性权重 自适应
在线阅读 下载PDF
基于自适应参数与混沌搜索的PSO算法求解柔性作业车间调度问题 被引量:8
17
作者 李莉 《计算机应用》 CSCD 北大核心 2012年第7期1932-1934,1950,共4页
针对传统粒子群优化(PSO)算法在求解柔性作业车间调度问题中的不足,提出了基于自适应参数与混沌搜索的粒子群优化算法。对粒子群算法中的惯性系数等参数采用基于迭代搜索而自适应调整的方式,使粒子在初期以较大惯性进行大范围搜索,后期... 针对传统粒子群优化(PSO)算法在求解柔性作业车间调度问题中的不足,提出了基于自适应参数与混沌搜索的粒子群优化算法。对粒子群算法中的惯性系数等参数采用基于迭代搜索而自适应调整的方式,使粒子在初期以较大惯性进行大范围搜索,后期逐渐减小惯性而转入精细搜索。这种方法改变了传统粒子群算法在求解过程中的盲目随机与求解精度不高的问题;同时,通过在局部搜索过程中引入混沌技术,扩大对最优解的寻找范围,以此避免算法陷入局部最优,有效提高算法的全局寻优能力。实验结果表明,基于自适应参数与混沌搜索的粒子群优化算法在求解柔性作业车间调度问题(FJSP)时能够获得更优粒子适应度平均值及更好的优化目标。所提算法对求解柔性作业车间调度问题可行,有效。 展开更多
关键词 柔性作业车间调度 自适应 混沌搜索 粒子群优化算法
在线阅读 下载PDF
自适应变系数PSO-RBF算法及其在预测工程的应用 被引量:2
18
作者 林大志 王锐利 《现代电子技术》 北大核心 2016年第11期113-115,共3页
RBF神经网络对于非线性预测具有较好的效果,但是其存在容易陷入局部最小值以及收敛速度慢等缺点,研究一种自适应变系数PSO算法对RBF神经网络的初始参数进行优化,之后由RBF神经网络对粒子群算法优化后的网络参数进行精细优化,从而提高神... RBF神经网络对于非线性预测具有较好的效果,但是其存在容易陷入局部最小值以及收敛速度慢等缺点,研究一种自适应变系数PSO算法对RBF神经网络的初始参数进行优化,之后由RBF神经网络对粒子群算法优化后的网络参数进行精细优化,从而提高神经网络的稳定性以及收敛效率和精度等。自适应变系数PSO算法主要是将自适应递减和递增因子以及自适应调节惯性权重算子策略引入到常规的PSO算法中,从而改进算法在搜索空间中的遍历性,提高寻找全局最优解的概率,提高收敛精度和效率。最后,以炼钢过程中的煤气消耗量与钢铁产量的非线性关系作为预测实例进行研究,使用结果表明,研究的基于自适应变系数PSO-RBF神经网络的预测模型具有很好的预测能力,能够在预测工程中发挥较大的作用。 展开更多
关键词 非线性预测 RBF神经网络 自适应变系数粒子群算法 煤气量预测
在线阅读 下载PDF
基于改进PSO算法的电液位置伺服系统MRAC跟踪控制 被引量:9
19
作者 蔡改贫 曾常熙 +1 位作者 周小云 刘鑫 《液压与气动》 北大核心 2021年第10期177-183,共7页
针对电液位置伺服系统控制性能不佳的问题,提出一种基于改进PSO算法优化的模型参考自适应(Model Reference Adaptive Control,MRAC)跟踪控制方法。首先,建立电液位置伺服系统数学模型,设计出模型参考自适应控制器;其次,分析PSO算法、APS... 针对电液位置伺服系统控制性能不佳的问题,提出一种基于改进PSO算法优化的模型参考自适应(Model Reference Adaptive Control,MRAC)跟踪控制方法。首先,建立电液位置伺服系统数学模型,设计出模型参考自适应控制器;其次,分析PSO算法、APSO算法在参数寻优过程中的不足,提出一种改进的PSO算法;最后,将改进的PSO算法用于模型参考自适应控制器以改善其控制性能。结果表明,改进PSO算法优化的模型参考自适应控制具有响应速度快、跟踪精度高的优点。 展开更多
关键词 电液位置伺服系统 改进pso算法 模型参考自适应控制
在线阅读 下载PDF
液体天线智能化控制算法研究
20
作者 黄杰 胡玥 +2 位作者 蔡强明 陈琦 聂诗良 《现代电子技术》 北大核心 2025年第5期21-29,共9页
针对应急状态下需要快速恢复通信能力的需求,文中设计了一种可重构液体天线模型,并以此为基础对液体天线的设计方法和智能化控制算法进行深入研究。首先利用神经网络算法建立液体天线电磁性能参数与物理参数之间的映射关系,预测在设计... 针对应急状态下需要快速恢复通信能力的需求,文中设计了一种可重构液体天线模型,并以此为基础对液体天线的设计方法和智能化控制算法进行深入研究。首先利用神经网络算法建立液体天线电磁性能参数与物理参数之间的映射关系,预测在设计性能指标下液体天线应具有的液体温度、高度、横截面半径、电导率,以此为可重构物理参数设计仿真控制系统。通过分析系统的运行特点,说明了引入PID算法进行控制的可行性。引入粒子群算法整定PID参数。针对传统粒子群算法的不足,提出LAIPSO算法,该算法在传统粒子群算法的基础上融合ICMIC混沌映射并引入莱维飞行策略,实现了自动更新惯性权重和学习率的自适应。通过选取6个测试函数对LAIPSO算法进行对比实验,说明了此算法在解决单峰与多峰问题的优越性。最后以预测液体天线的物理参数为控制目标进行对比实验,证明了LAIPSO算法对PID参数具有好的整定效果。 展开更多
关键词 液体天线 天线设计 神经网络 改进粒子群算法 PID参数整定 自适应 混沌映射 莱维飞行
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部